Kernel-Based NPLS for Continuous Trajectory Decoding from ECoG Data for BCI Applications
详细信息    查看全文
文摘
In this paper, nonlinearity is introduced to linear neural activity decoders to improve continuous hand trajectory prediction for Brain-Computer Interface systems. For decoding the high-dimensional data-tensor, a kernel regression was coupled with multilinear PLS (NPLS). Two ways to introduce nonlinearity were studied: a generalized linear model with kernel link function and kernel regression in the NPLS latent variables space (inside or outside the NPLS iterations). The efficiency of these approaches was tested on the publically available database of the simultaneous recordings of three-dimensional hand trajectories and epidural electrocorticogram (ECoG) signals of a Japanese macaque. Compared to linear methods, nonlinearity did not significantly improve the prediction accuracy but did significantly improve the smoothness of the prediction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700