Two-Level Space–Time Domain Decomposition Methods for Flow Control Problems
详细信息    查看全文
文摘
For time-dependent control problems, the class of sub-optimal algorithms is popular and the parallelization is usually applied in the spatial dimension only. In the paper, we develop a class of fully-optimal methods based on space–time domain decomposition methods for some boundary and distributed control of fluid flow and heat transfer problems. In the fully-optimal approach, we focus on the use of an inexact Newton solver for the necessary optimality condition arising from the implicit discretization of the optimization problem and the use of one-level and two-level space–time overlapping Schwarz preconditioners for the Jacobian system. We show that the numerical solution from the fully-optimal approach is generally better than the solution from the sub-optimal approach in terms of meeting the objective of the optimization problem. To demonstrate the robustness and parallel scalability and efficiency of the proposed algorithm, we present some numerical results obtained on a parallel computer with a few thousand processors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700