Electron transfer reactions of piperidine aminoxyl radicals
详细信息    查看全文
  • 作者:Fa Zhang (1)
    YouCheng Liu (2)
  • 关键词:aminoxyl radical ; nitroxide ; nitroxyl radical ; iminoxyl radicals ; oxoammonium salt ; electron transfer ; reduction and oxidation
  • 刊名:Chinese Science Bulletin
  • 出版年:2010
  • 出版时间:September 2010
  • 年:2010
  • 卷:55
  • 期:25
  • 页码:2760-2783
  • 全文大小:1043KB
  • 参考文献:1. Fukuzumi S. New perspective of electron transfer chemistry. Org Biomol Chem, 2003, 1: 609-20 CrossRef
    2. Tuite E, Benniston A, Harriman A, et al. Electron transfer in chemistry. J Chem Soc, Perkin Trans 1, 2002, 17: 2028-030
    3. Mariano P S, ed. Advances in Electron Transfer Chemistry. Vol 6. Greenwich, C T: JAI Press, 1999
    4. Eberson L. Electron-transfer reactions in organic chemistry. Adv Phys Org, 1982, 18: 79-85 CrossRef
    5. Todres Z V. Ion-radical organic reactions. Tetrahedron, 1985, 41: 2771-823 CrossRef
    6. Liu Y C, Liu Z L. Free radical chemistry. Huaxue Tongbao, 1999, 12: 17-0
    7. Liu Y C, Dang H S, Liu Z L. Some recent studies on electron transfer reactions at Lanzhou University. Rev Chem Intermed, 1986, 7: 111-31 CrossRef
    8. Barclay L R C, Ingold K U. Autoxidation of biological molecules. 2. Autoxidation of a model membrane, comparison of the autoxidation of egg lecithin phosphatidylcholine in water and in chlorobenzene. J Am Chem Soc, 1981, 103: 6478-785 CrossRef
    9. Kehl H. Chemistry and Biology of Hydroxamic Acids. Basel: Karger, 1982
    10. Soule B P, Hyodo F, Matsumoto K, et al. The chemistry and biology of nitroxide compounds. Free Radic Biol Med, 2007, 42: 1632-650 CrossRef
    11. Hideg K, Kalai T, Sar C P. Recent results in chemistry and biology of nitroxides. J Heterocycl Chem, 2005, 42: 437-50 CrossRef
    12. Keana J F W. Newer aspects of the synthesis and chemistry of nitroxide spin labels. Chem Rev, 1978, 78: 37-4 CrossRef
    13. Brik M E. Chemistry of persistent free bi- and polyradicals. Heterocycles, 1995, 41: 2827-873 CrossRef
    14. Naik N, Braslau R. Synthesis and applications of optically active nitroxides. Tetrahedron, 1998, 54: 667-96 CrossRef
    15. Lemaire M T. Recent developments in the coordination chemistry of stable free radicals. Pure Appl Chem, 2004, 76: 277-93 CrossRef
    16. Volodarsky L B, Reznikov V A, Ovcharenko V I. Synthetic chemistry of stable nitroxides. Boca Raton: CRC Press, 1994
    17. Zhdanov R I. Bioactive Spin Labels. Berlin: Springer-Verlag, 1992
    18. Berliner L J. Spin Labeling: The Next Millennium, Biological Magnetic Resonance, Vol 14. New York: Plenum Press, 1998
    19. Hideg K, Hankovszky O H. Chemistry of spin-labeled amino acids and peptides, some new mono- and bifunctionalized nitroxide free radicals. Biol Magnetic Res, 1989, 8(Spin Labeling): 427-88
    20. Kocherginsky N, Swartz H M. Nitroxide spin labels: Reactions in biology and chemistry. New York: CRC Press, 1995
    21. Rozantsev E G. Nitroxyl radicals: Unique findings of 20th century Russian chemists. Rossiiskii Khimicheskii Zhurnal, 2000, 44: 87-1
    22. Rozantsev E G, Sholle V D. Synthesis and reactions of stable nitroxyl radicals. II, reactions. Synthesis, 1971, 8: 401-14 CrossRef
    23. Rozantsev E G, Sholle V D. Advances in the chemistry of nitroxyl radicals. Usp Khim, 1971, 40: 417-43
    24. Rozantsev E G. Free Nitroxyl Radicals. New York: Plenum Press, 1970
    25. Hoffman A K, Henderson A T. A new stable free radical: di-tert-Butylnitroxide. J Am Chem Soc, 1961, 83: 4671 CrossRef
    26. Martinez de Ilarduya J I, Krzyczmonik P, Scholl H, et al. Electrode reactions of nitroxide radicals. IX, anodic oxidations of 4-hydroxyi-mino-2,2,6,6-tetramethylpiperidine-1-oxyl and 4-[(aminocarbonyl) hydrazone]-2,2,6,6-tetramethylpiperidine-1-oxyl in water solutions. Electroanalysis, 1991, 3: 233-37 CrossRef
    27. Scholl H, Chmielewska B, Skowronski R, et al. Electrode reactions of nitroxyl radicals, derivatives of 2,2,6,6-tetramethylpiperidine. Part IV. Pol J Chem, 1987, 61: 851-59
    28. Marx L, Schoellhorn B. Intramolecular charge effects in the electrochemical oxidation of aminoxyl radicals. New J Chem, 2006, 30: 430-34 CrossRef
    29. Summermann W, Deffner U. Electrochemical oxidation of aliphatic nitroxyl radicals. Tetrahedron, 1975, 31: 593-96 CrossRef
    30. Semmelhack M F, Chon C S, Cortes D A. Nitroxyl-mediated electrooxidation of alcohols to aldehydes and ketones. J Am Chem Soc, 1983, 105: 4492-494 CrossRef
    31. Andruzzi R, Trazza A, Greci L, et al. On the electrochemical reduction mechanism of indolinone nitroxide radicals in DMF. J Electroanal Chem Interfacial Electrochem, 1980, 107: 365-74 CrossRef
    32. Neiman M B, Mairanovskii S G, Korvaraskaya B M, et al. Polarographic study of some N-oxide free radicals. Izv Akad Nauk SSSR, Ser Khim, 1964, 8: 1518-521
    33. Liu Y C, Zhang F, Jiang Z Q. Nitroxides, XVII, electrochemical behavior and kinetics of self-decay of piperidine nitroxide free radicals in aqueous solutions. Acta Chim Sin, 1987, 45: 447-83
    34. Zhang F, Liu Y C. Studies on nitroxides, XVIII, kinetics of one- electron electrochemical oxidation of piperidine nitroxides in aqueous solution. Acta Chim Sin, 1989, 47: 186-90
    35. Zhang F, Liu Y C. Studies on nitroxides, XXI, mechanism for the one-electron reduction electrode reaction of piperidine nitroxides in aqueous solution studied by polarography. Acta Chim Sin, 1989, 47: 1120-123
    36. Nicholson R S, Shain I. Theory of stationary electrode polarography, single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal Chem, 1964, 36: 706-23 CrossRef
    37. Smith D E, McCord T G. Alternating current polarography and irreversible processes. Anal Chem, 1968, 40: 474-81 CrossRef
    38. Galvez J, Molina A, Serna C. Pulse polarography. Part IX, method of discrimination between the catalytic, CF, ECE and EC mechanisms, calculation of the rate constants of the chemical reaction for the catalytic, CE and ECE mechanisms. J Electroanal Chem Interfacial Electrochem, 1981, 124: 201-11 CrossRef
    39. Davydov R M. Interaction of iron (II) ions with an iminoxyl radical. Zh Fiz Khim, 1968, 42: 2639-643
    40. Medzhidov A A, Rozantsev E G, Neiman M B. Utilization of oxidizing properties of iminoxyl radicals for synthesis of individual ion-radicals from aromatic amines. Dokl Akad Nauk SSSR, 1966, 168: 348-50
    41. Zelenin S N, Khidekel M L, Mozzhukhin D D, et al. Catalysis of hydrogen transfer by methods presumably similar to those of enzymes, III, model reactions of dihydronicotinamide-adenine dinucleotide coenzyme, effectiveness of flavines, quinones, and similar substances as catalysts. Zh Obshch Khim, 1967, 37: 1500-507
    42. Kalashnikova L A, Buchachenko A L, Neiman M B, et al. Energies of oxygen-hydrogen bond breaking in tri-tert-butylphenol and some hydroxylamines, and the strength of the π-complex of a dianisyl nitroxide radical with benzene. Zh Fiz Khim, 1969, 43: 64-1
    43. Tatikolov A S, Khudyakov I V, Kuz’min V A. Kinetics of reactions of electron transfer between semiquinone and stable radicals. Izv Akad Nauk SSSR, Ser Khim, 1981, 5: 1003-007
    44. Liu Y C, Wu S P, Jiang Z Q, et al. Nitroxides, XI, one-electron transfer reaction of piperidine nitroxides with hydroxylamine. Chem J Chinese Univ, 1985, 6: 709-13
    45. O’Neill P, Jenkins T C. Electron-transfer reactions of nitroxyl radicals with one-electron reduced quinones and viologens. J Chem Soc, Faraday Trans 1, 1979, 75: 1912-918 CrossRef
    46. Koroli L L, Kuzmin V A, Khudyakov I V. Kinetics of recombination, dismutation, and disproportionation reactions involving neutral ketyl radicals and radical anions. Int J Chem Kinet, 1984, 16: 379-96 CrossRef
    47. Kaplan J, Canonico P G, Caspary W J. Electron spin resonance studies of spin-labeled mammalian cells by detection of surface-membrane signals. Proc Natl Acad Sci USA, 1973, 70: 66-0 CrossRef
    48. Stier A, Sackmann E. Spin labels as enzyme substrates, heterogeneous lipid distribution in liver microsomal membranes. Biochim Biophys Acta, 1973, 311: 400-08 CrossRef
    49. Lee T D, Birrell G B, Bjorkman P J, et al. Azethoxyl nitroxide spin labels, ESR studies involving thiourea crystals, model membrane systems and chromatophores, and chemical reduction with ascorbate and dithiothreitol. Biochim Biophys Acta, 1979, 550: 369-83 CrossRef
    50. Chan T W, Bruice T C. Reaction of nitroxides with 1,5-dihydroflavins and N3,5-dimethyl-1,5-dihydrolumiflavin. J Am Chem Soc, 1977, 99: 7287-291 CrossRef
    51. Goldberg J S, Rauckman E J, Rosen G M. Bioreduction of nitroxides by Staphylococcus aureus. Biochem Biophys Res Commun, 1977, 79: 198-02 CrossRef
    52. Kocherginsky N M, Kostetski Y Y, Smirnov A I. Use of nitroxide spin probes and electron paramagnetic resonance for assessing reducing power of beer, role of SH groups. J Agri Food Chem, 2005, 53: 1052-057 CrossRef
    53. Couet W R, Eriksson U G, Sosnovsky G, et al. Factors affecting nitroxide stability in biological materials. Biopharm Pharmacokinet Eur Congr, 2nd, 1984, 2: 616-25
    54. Couet W R, Brasch R C, Sosnovsky G, et al. Factors affecting nitroxide reduction in ascorbate solution and tissue homogenates. Magn Reson Imaging, 1985, 3: 83-8 CrossRef
    55. Giotta G J, Wang H H. Reduction of nitroxide free radicals by biological materials. Biochem Biophys Res Commun, 1972, 46: 1576-580 CrossRef
    56. Morrissett J D, Drott H R. Oxidation of the sulfhydryl and disulfide groups by the nitroxyl radical. J Biol Chem, 1969, 244: 5083-084
    57. Liu Y C, Wang X Z, Liu Z L. Studies on nitroxides, IV, oxidation of cysteine by 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl. Chem J Chinese Univ, 1983, 4: 257-59
    58. Liu Y C, Jiang Z Q, Zhang F. Nitroxides, XIII, mechanism of reaction between 2,2,6,6-tetramethyl-4-hydroxy-1-piperidinyloxy and d,l-cysteine in alkaline buffer solution. Acta Chim Sin, 1985, 43: 1086-091
    59. Liu Y C, Zhang F. Studies on nitroxides, XX, mechanistic study on reaction between 2,2,6,6-tetramethyl-4-hydroxypiperidine oxoammonium bromide and cysteine in acidic aqueous medium. Acta Chim Sin, 1989, 47: 411-16
    60. Liu Y C, Jiang Z Q, Gao Z L. Studies on nitroxides, XIV, redox reaction of 2,2,6,6-tetramethyl-4-hydroxypiperidine nitroxide and glutathione. Chinese Sci Bull, 1987, 32: 286-87
    61. Liu Y C, Gao Z L. Studies on nitroxides-kinetics and mechanism of the reaction tween glutathione and 2,2,6,6-tetramethyl-4-hydro-xypiperidine-1-oxyl radical in alkaline buffer. Chinese Sci Bull, 1988, 33: 2032-035
    62. Martinek K, Yatsimirski A K, Levashov A V, et al. The kinetic theory and the mechanisms of micellar effects on chemical reactions. In: Mittal K L, ed. Micellization, Solubilization, Microemulsions (Proc Int Symp). New York: Plenum Press, 1977. 489-08
    63. Zhang F, Gao Z L, Liu Y C. Studies on single-electron oxidation of N-alkyl- / p-phenylenediamines and benzidines in aqueous acetonitrile by cyclovoltammetry and ESR spectroscopy. Chem J Chin Univ, 1988, 4: 24-1
    64. Gao Z L, Zhang F, Liu Y C. Studies on nitroxides, XXIII, single electron transfer reaction between piperidine nitroxide, its oxoammonium salt and N,N,N-N-tetramethyl-p-phenylenediamine in aqueous solution. Chem J Chinese Univ, 1989, 10: 718-23
    65. Seib P A, Tolbert B M, ed. Ascorbic acid: Chemistry, metabolism, and uses. Advances in Chemistry Series, Vol 200. Washington DC: ACS, 1982
    66. Craw M T, Depew M C. Contributions of electron spin resonance spectroscopy to the study of vitamins C, E and K. Rev Chem Intermed, 1985, 6: 1-1 CrossRef
    67. Hubbell W L, McConnell H M. Motion of steroid spin labels in membranes. Proc Natl Acad Sci USA, 1969, 63: 16-2 CrossRef
    68. Kocherginskii N M, Sakste N I, Berkovich M A, et al. Reduction of spin labels with ascorbic acid in solution and in biomembranes. Biofizika, 1981, 26: 442-46
    69. Kornberg R D, McConnell H M. Inside-outside transitions of phospholipids in vesicle membranes. Biochem, 1971, 10: 1111-120 CrossRef
    70. Ross A H, McConnell H M. Permeation of a spin-label phosphate into the human erythrocyte. Biochem, 1975, 14: 2793-798 CrossRef
    71. Tonomura Y, Morales M F. Change in state of spin labels bound to sarcoplasmic reticulum with change in enzymic state, as deduced from ascorbate-quenching studies. Proc Natl Acad Sci USA, 1974, 71: 3687-691 CrossRef
    72. Quintanilha A T, Packer L. Surface localization of sites of reduction of nitroxide spin-labeled molecules in mitochondria. Proc Natl Acad Sci USA, 1977, 74: 570-74 CrossRef
    73. Craescu C T, Baracu I, Grecu N, et al. On the reduction of nitroxide free radicals by ascorbic acid in solution and erythrocyte suspension. Rev Roum Biochim, 1982, 19: 15-3
    74. Paleos C M, Dais P. Ready reduction of some nitroxide free radicals with ascorbic acid. J Chem Soc Chem Commun, 1977, 10: 345-46 CrossRef
    75. Marx L, Chiarelli R, Guiberteau T, et al. A comparative study of the reduction by ascorbate of 1,1,3,3-tetraethylisoindolin-2-yloxyl and of 1,1,3,3-tetramethylisoindolin-2-yloxyl. J Chem Soc, Perkin Trans 1, 2000, 8: 1181-182 CrossRef
    76. Kocherginskii N M, Gol’dfel’d M G, Davydov R M, et al. Effect of detergents on the rate of reaction of iminoxyl radicals with ascorbic acid. Zh Fiz Khim, 1972, 46: 2375-376
    77. Lissi E A, Rubio M A, Araya D, et al. Reaction of di-tert-butyl nitroxide radicals. Int J Chem Kinet, 1980, 12: 871-81 CrossRef
    78. Ebel C, Ingold K U, Michon J, et al. Nitroxides, 105, Kinetics of the reduction of a nitroxide radical by ascorbic acid in the presence of β-cyclodextrin. Tetrahedron Lett, 1985, 26: 741-44 CrossRef
    79. Ebel C, Ingold K U, Michon J, et al. Nitroxides, 107, Kinetics of reduction of a nitroxide radical by ascorbic acid in the presence of β-cyclodextrin, determination of the radical β-cyclodextrin association constant and rate constants for reaction of the free and complexed nitroxide radical. Nouv J Chim, 1985, 9: 479-85
    80. Okazaki M, Kuwata K. A stopped-flow ESR study on the reactivity of some nitroxide radicals with ascorbic acid in the presence of β-cyclodextrin. J Phys Chem, 1985, 89: 4437-440 CrossRef
    81. Liu Y C, Wu L M, Liu Z L, et al. Studies on nitroxides, XII, A kinetic ESR study on the oxidation of ascorbic acid by a nitroxide. Acta Chim Sin, 1985, 43: 669-74
    82. Liu Y C, Liu Z L, Han Z X. Radical intermediates and antioxidant activity of ascorbic acid. Rev Chem Intermed, 1988, 10: 269-89 CrossRef
    83. Doba T, Burton G W, Ingold K U. Antioxidant and co-antioxidant activity of vitamin C, the effect of vitamin C, either alone or in the presence of vitamin E or a water-soluble vitamin E analog, upon the peroxidation of aqueous multilamellar phospholipid liposomes. Biochim Biophys Acta, 1985, 835: 298-03
    84. Niki E, Kawakami A, Yamamoto Y, et al. Oxidation of lipids, VIII, synergistic inhibition of oxidation of phosphatidylcholine liposome in aqueous dispersion by vitamin E and vitamin C. Bull Chem Soc Jpn, 1985, 58: 1971-975 CrossRef
    85. Pryor W A, Kaufman M J, Church D F. Autoxidation of micelle-solubilized linoleic acid, relative inhibitory efficiencies of ascorbate and ascorbyl palmitate. J Org Chem, 1985, 50: 281-83 CrossRef
    86. Liu Y C, Han Z X, Wu L M, et al. Studies on bio-antioxidants-micellar effects on the reduction of nitroxides by vitamin C. Sci China Ser B, 1989, 32: 937-47
    87. Liu Z L, Han Z X, Chen P, et al. Stopped-flow ESR study on the reactivity of vitamin E, vitamin C and its lipophilic derivatives towards Fremy’s salt in micellar systems. Chem Phys Lipids, 1990, 56: 73-0 CrossRef
    88. Liu Z L, Han Z X, Chen P, et al. Studies on bio-antioxidants. II. An ESR study on the antioxidant efficiency of ascorbyl palmitate in micelles. Chin J Chem, 1991, 9: 144-55
    89. Liu Y C, Liu Z L, Han Z X, et al. Microenvironmental effects on the reactivity of bioantioxidants. Prog Nat Sci, 1991, 1: 297-06
    90. Wu L M, Guo F L, Liu Z L, et al. Antioxidant activity of lipophilic vitamin C derivative in dipalmitoyl phosphatidylcholine vesicles, a stopped-flow ESR kinetic study. Res Chem Intermed, 1993, 19: 657-68 CrossRef
    91. Fendler E J, Fendler J H. Micellar catalysis in organic reactions: Kinetic and mechanistic implications. Adv Phys Org Chem, 1970, 8: 271-06 CrossRef
    92. Burkey T J, Griller D. Micellar systems as devices for enhancing the lifetimes and concentrations of free radicals. J Am Chem Soc, 1985, 107: 246-49 CrossRef
    93. Lei X G, Li Z Z, Liu Y C. Synthesis and properties of dialkylmethyl sulfate bilayers. J Chem Soc Chem Commun, 1990, 9: 711-12 CrossRef
    94. Rozantsev E G, Neiman M B. Organic radical reactions involving no free valence. Tetrahedron, 1964, 20: 131-37 CrossRef
    95. Liu Y C, Jiang Z Q. Studies on nitroxides, I, synthesis and reactions of piperidinyl nitroxides. Chem J Chinese Univ, 1980, 1: 71-9
    96. Foster R. Organic Charge-Transfer Complexes. Organic Chemistry: A Series of Monographs, Vol 15. New York: Academic Press, 1969
    97. Keute J S, Anderson D R, Koch T H. Photochemical reactivity of the di-tert-butyl nitroxide π,π* state and di-tert-butyl nitroxide halocarbon charge-transfer excited states. J Am Chem Soc, 1981, 103: 5434-439 CrossRef
    98. Jiang Z Q, Wu S P, Zhang M X, et al. Studies on nitroxides, XXII, contact charge transfer complexes of piperidine nitroxides with halomethanes and their photo-induced reactions. Chem J Chinese Univ, 1989, 10: 45-0
    99. Merbouh N, Bobbitt J M, Brueckner C. Preparation of tetrameth-ylpiperidine-1-oxoammonium salts and their use as oxidants in organic chemistry, a review. Org Prep Proced Int, 2004, 36: 3-1 CrossRef
    100. Merbouh N. 2,2,6,6-tetramethylpiperidine-based oxoammonium salts. Synlett, 2003, 11: 1757-758 CrossRef
    101. De Nooy A E J, Besemer A C, Van Bekkum H. On the use of stable organic nitroxyl radicals for the oxidation of primary and secondary alcohols. Synthesis, 1996, 10: 1153-174 CrossRef
    102. Pradhan P P, Bobbitt J M, Bailey W F. Novel reactions of oxoammonium salt with alkenes and activated aromatics. Abstracts, 35th Northeast Regional Meeting of the American Chemical Society, Binghamton, NY, United States, 2006
    103. Merbouh N, Bobbitt J M, Brueckner C. Oxoammonium salts, 9, oxidative dimerization of polyfunctional primary alcohols to esters, an interesting β oxygen effect. J Org Chem, 2004, 69: 5116-119 CrossRef
    104. Yonekuta Y, Oyaizu K, Nishide H. Structural implication of oxoammonium cations for reversible organic one-electron redox reaction to nitroxide radicals. Chem Lett, 2007, 36: 866-67 CrossRef
    105. Israeli A, Patt M, Oron M, et al. Kinetics and mechanism of the comproportionation reaction between oxoammonium cation and hydro xylamine derived from cyclic nitroxides. Free Radic Biol Med, 2005, 38: 317-24 CrossRef
    106. Golubev V A, Rozantsev E G, Neiman M B. Some reactions of free iminoxyl radicals with unpaired electron participation. Izv Akad Nauk SSSR Ser Khim, 1965, 11: 1927-936
    107. Miyazawa T, Endo T, Shiikaski S, et al. Selective oxidation of alcohols by oxoaminium salts (R2N:O+X-). J Org Chem, 1985, 50: 1332-334 CrossRef
    108. Liu Y C, Liu Z L, Guo H X. Selective oxidation of secondary alcohols in the presence of primary alcohols by an oxoammonium salt. Chem J Chin Univ, 1988, 4: 90-4
    109. Liu Y C, Guo H X, Liu Z L. Reactivity and selectivity in the oxidation of alcohols by oxoammonium salts. Acta Chim Sin, 1991, 49: 187-92
    110. Guo H X, Liu Y C, Liu Z L, et al. 1-Oxo-2,2,6,6-tetramethyl-4-chloropiperidinium perchlorate. A new facile oxidant for phenol coupling. Res Chem Intermed, 1992, 17: 137-43
    111. Liu Y C, Wang W, Guo Q X. Oxidative coupling of phenols by 2,2,6,6-tetramethyl-4-methoxypiperidine oxoammonium chloride. Chin Chem Lett, 1996, 7: 790-93
    112. Bobbitt J H, Ma Z. Oxoammonium salts, 4, a new reagent for phenol coupling. Heterocycles, 1992, 33: 641-48 CrossRef
    113. Mattay J, Runsink J. Additions of 1,1-diethoxyethene to 1,2-diketones. J Org Chem, 1985, 50: 2815-818 CrossRef
    114. Hills L R, Ronald R C. Total synthesis of (-)-grahamimycin A1. J Org Chem, 1985, 50: 470-73 CrossRef
    115. Rozwadowska M D, Chrzanowska M. Synthetic entry into the secoisoquinoline alkaloids. Tetrahedron, 1985, 41: 2885-890 CrossRef
    116. Golubev V A, Miklyush R V. New preparative method for the oxidation of an activated methylene group to a carbonyl one. Zh Org Khim, 1972, 8: 1356-357
    117. Hunter D H, Barton D H R, Motherwell W J. Oxoammonium salts as oxidizing agents: 2,2,6,6-tetramethyl-1-oxopiperidinium chloride. Tetrahedron Lett, 1984, 25: 603-06 CrossRef
    118. Liu Y C, Ren T, Guo Q X. Oxyfunctionalization of ketones bearing α-methylene group with piperidine oxoammonium salt, synthesis of α-diketones from monoketones. Chin J Chem, 1996, 14: 252-58
    119. Ren T, Liu Y C, Guo Q X. Selective oxyfunctionalization of ketones using 1-oxopiperidinium salt. Bull Chem Soc Jpn, 1996, 69: 2935-941 CrossRef
    120. Bard A J, Ledwith A, Shine H J. Formation, properties and reactions of cation radicals in solution. Adv Phys Org Chem, 1976, 13: 155-78 CrossRef
    121. Hammerich O, Parker V D. Kinetics and mechanisms of reactions of organic cation radicals in solution. Adv Phys Org Chem, 1984, 20, 55-89 CrossRef
    122. Lewis G N, Lipkin D. Reversible photochemical processes in rigid media, the dissociation of organic molecules into radicals and ions. J Am Chem Soc, 1942, 64: 2801-808 CrossRef
    123. Walther B W, Williams F. ESR spectra and structure of the tetramethylsilane and tetramethylgermane radical cations. J Chem Soc, Chem Commun, 1982, 4: 270-72 CrossRef
    124. Symons M C R. The radical cation of tetramethylstannane: An electron spin resonance study. J Chem Soc, Chem Commun, 1982, 15: 869-71 CrossRef
    125. Liu Y C, Liu Z L, Chen P, et al. Generation of radical cations-a facile generation of radical cations via the action of an oxoammonium trifluoroacetate. Scientia Sinica, Series B, 1988, 31: 1062-072
    126. Liu Y C, Liu Z L, Wu L M, et al. A facile generation of radical cations via the action of nitroxides. Tetrahedron Lett, 1985, 26: 4201-202 CrossRef
    127. Abakumov G A, Tikhonov V D. Interaction of a stable radical of 2,2,6,6-tetramethyl-4-piperidone 1-oxide with acids. Izv Akad Nauk SSSR Ser Khim, 1969, 4: 796-01
    128. Golubev V A, Zhdanov R I, Gida V M, et al. Interaction of iminoxyl radicals with some inorganic acids. Izv Akad Nauk SSSR Ser Khim, 1971, 4: 853-55
    129. Golubev V A, Sen V D, Kulyk I V, et al. Mechanism of the acid disproportionation of di-tert-alkylnitroxyl radicals. Izv Akad Nauk SSSR, Ser Khim, 1975, 10: 2235-243
    130. Zheng X Q, Ruan X Q, Wang W, et al. Electron transfer between N-substituted phenothiazines and the 1-oxopiperidinium ion in the presence of β-cyclodextrin. Bull Chem Soc Jpn, 1999, 72: 253-57 CrossRef
    131. Liu Y C, Ding Y B, Liu Z L. Preparation of single crystal and molecular structure of phenothiazine radical cation hexachloroantimonates. Acta Chim Sin, 1990, 48: 1199-203
    132. Wang Q G, Liu Y C, Ding Y B, et al. Crystal and molecular structure of N-methylphenothiazine radical cation hexachloroantimonate, MPT+SbCl6-. Jiegou Huaxue, 1988, 7: 153-56
    133. Liu Y C, Ding Y B, Liu Z L, et al. Crystal and molecular structure of N-ethylphenothiazine radical cation hexachloroantimonate EPT+ SbCl 6 ?/sup> . Jiegou Huaxue, 1989, 8: 140-44
    134. Uchida T, Ito M, Kozawa K. Crystal structure and related properties of phenothiazine cation radical-hexachloroantimonate, monoclinic(I) form. Bull Chem Soc Jpn, 1983, 56: 577-82 CrossRef
    135. Ruperez F L, Conesa J C, Soria J, et al. X-ray diffraction and electron paramagnetic resonance study of chlorpromazine cation radical. J Phys Chem, 1985, 89: 1178-181 CrossRef
    136. Obata A, Yoshimori M, Yamada K, et al. Crystal and molecular structures of fenethazine hydrochloride and its cation radical-copper(II) complex salt. Bull Chem Soc Jpn, 1985, 58: 437-41 CrossRef
    137. Apreda M C, Cano F H, Foces-Foces C, et al. Crystal and molecular structure of the alimemazine cation radical. J Chem Soc Perkin Trans 2, 1987, 5: 575-79 CrossRef
    138. Kobayashi H. Crystal structure of an N-methylphenothiazine-7,7,8,8-tetracyanoquinodimethan complex. Bull Chem Soc Jpn, 1973, 46: 2945-949 CrossRef
    139. Guo Q X, Liu B, Liu Y C. ESR studies on N-alkylphenothiazine radical cation salts. Chem Res Chin Univ, 1995, 11: 195-01
    140. Clarke D, Gilbert B C, Hanson P, et al. Heterocyclic free radicals, Part 8, the influence of the structure and the conformation of the side chain on the properties of phenothiazine cation-radicals substituted at nitrogen. J Chem Soc Perkin Trans 2, 1978, 10: 1103-110 CrossRef
    141. Gao X S, Feng J K, Jia Q, et al. Theoretical studies on the structures and electronic spectra of phenothiazine, N-methylphenothiazine and their radical cations. Acta Chim Sin, 1996, 54: 1159-164
    142. Li X S, Liu L, Mu T W, et al. A theoretical study on the structure and properties of phenothiazine derivatives and their radical cations. Res Chem Intermed, 2000, 26: 375-84 CrossRef
    143. Zhang H M, Ruan X Q, Guo Q X, et al. A study on one-electron oxidation of phenothiazine derivatives by piperidine oxoammonium ion in SDS micelle. Res Chem Intermed, 1998, 24: 687-93 CrossRef
    144. Guo Q X, Huan P, Liu B, et al. Chin Chem Lett, 1992, 3: 53-6
    145. Liu L, Li X S, Mu T W, et al. Interplay between molecular recognition and redox properties: A theoretical study of the inclusion complexation of β-cyclodextrin with phenothiazine and its radical cation. J Inclusion Phenom Macrocyclic Chem, 2000, 38: 199-06 CrossRef
    146. Fromherz P. Micelle structure: A surfactant block model. Chem Phys Lett, 1981, 77: 460-66 CrossRef
    147. Dill K A, Flory P J. Molecular organization in micelles and vesicles. Proc Natl Acad Sci USA, 1981, 78: 676-80 CrossRef
    148. Ruan X Q. M Sc. degree thesis. Lanzhou University, P. R. China, 1997
    149. Marcus R A, Eyring H. Chemical and electrochemical electron-transfer theory. Ann Rev Phys Chem, 1964, 15: 155-96 CrossRef
    150. Wu L M, Guo X, Wang J, et al. Kinetic studies on the single electron transfer reaction between 2,2,6,6-tetramethylpiperidine oxoammonium ions and phenothiazines: The application of Marcus theory. Sci China Ser B-Chem, 1999, 42: 138-44 CrossRef
    151. Eberson L. Electron Transfer Reactions in Organic Chemistry. Berlin: Springer-Verlag, 1987
    152. Kupchan S M, Liepa A J, Kameswaran V, et al. Novel nonphenol oxidative coupling. J Am Chem Soc, 1973, 95: 6861-863 CrossRef
    153. Hess U, Hiller K, Schroeder R, et al. Electrochemical rearrangement of papaverine and dimerization to 12,12-bis{2,3,9,10-tetramethox-yindolo[2,1-a]isoquinolinyl}. J Prakt Chem, 1977, 319: 568-72 CrossRef
    154. Ding Y B, Yang L, Liu Z L, et al. Novel oxidative coupling of papaverine by an oxoammonium salt. J Chem Res, 1994, 8: 328-29
    155. Lightner D A, McDonagh A F. Molecular mechanisms of phototherapy for neonatal jaundice. Acc Chem Res, 1984, 17: 417-24 CrossRef
    156. Schmid R, Mcdonagh A F. Hyperbilirubinemia. In: Stanbury J B, Wyngaarden J B, Fredrickson D S, eds. The Metabolic Basis of Inherited Diseases. 4th ed. New York: McGraw-Hill, 1978. 1221-257
    157. Stocker R, Yamamoto Y, McDonagh A F, et al. Bilirubin is an antioxidant of possible physiological importance. Science, 1987, 235: 1043-046 CrossRef
    158. Guo Q X, Yang L, Liu B, et al. A study on bilirubin radical cation generated by one-electron oxidation. Chem Res Chin Univ, 1992, 8: 301-04
    159. Guo Q X, Wang J, Guo X, et al. Kinetics and mechanism of one-electron oxidation of bilirubin in dichloromethane solution. Res Chem Intermed, 1996, 22: 23-9 CrossRef
    160. Liu Y C, Liu Z L, Chen P, et al. Oxoammonium trifluoroacetate-a facile oxidant for the generation of radical cations. Physical Organic Chemistry 1986. A Collection of the Invited Lectures Presented at the 8th IUPAC Conference on Physical Organic Chemistry, Tokyo, Japan, 24-9 August, 1986. In: Kobayashi M ed. Studies in Organic Chemistry. Amsterdam: Elsevier, 1987, 31: 59-6
  • 作者单位:Fa Zhang (1)
    YouCheng Liu (2)

    1. Johnson & Johnson Consumer and Personal Products Worldwide, Skillman, New Jersey, 08558, USA
    2. Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
  • ISSN:1861-9541
文摘
This review article summarizes the electron transfer reactions of piperidine aminoxyl radicals. Electrochemical studies revealed the single electron transfer nature of piperidine aminoxyl radicals. In solution, piperidine aminoxyl radicals serve as single electron transfer oxidation reagent to react with various biologically interesting molecules such as glutathione, cysteine, ascorbic acid, and amines. The reaction product distribution, reaction kinetics, intermediates, and the reaction features in biological mimic environments including micelles and cyclodextrins were investigated. Oxoammonium salts, the one-electron transfer oxidation products of piperidine aminoxyl radicals, are agents of organic synthesis to selectively generate ketones or di-ketones from alcohols or ketones bearing α-methylene group under mild conditions. The new reactions of oxoammonium salts with aromatic amines, phenols, heterocycles including phenothiazines, papaverine, and bilirubin are also illustrated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700