Structure and functional features of olive pollen pectin methylesterase using homology modeling and molecular docking methods
详细信息    查看全文
  • 作者:Jose C. Jimenez-Lopez (1) (4)
    Simeon O. Kotchoni (2) (3)
    María I. Rodríguez-García (4)
    Juan D. Alché (4)
  • 关键词:Allergen ; Cell wall ; Homology modeling ; Molecular docking ; Olea europaea L. ; Pectin ; Pollen
  • 刊名:Journal of Molecular Modeling
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:18
  • 期:12
  • 页码:4965-4984
  • 全文大小:3170KB
  • 参考文献:1. Willats WG, Orfila C, Limberg G, Buchholt HC, van Alebeek GJ, Voragen AG, Marcus SE, Christensen TM, Mikkelsen JD, Murray BS, Knox JP (2001) Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. Implications for pectin methyl esterase action, matrix properties, and cell adhesion. J Biol Chem 276:19404-9413 CrossRef
    2. Giovane A, Servillo L, Balestrieri C, Raiola A, D'Avino R, Tamburrini M, Clardiello MA, Camardella L (2004) Pectin methylesterase inhibitor. Biochim Biophys Acta 1696:245-52 CrossRef
    3. Rexova-Benkova L, Markovic O (1976) Pectic enzymes. Adv Carbohydr Chem Biochem 33:323-85 CrossRef
    4. Benen JAE, Vincken JP, van Alebeek GJ (2002) Microbial pectinases. In: Seymour GB, Knox JP (eds) Pectins and their manipulation. Blackwell, Oxford, pp 174-21
    5. Shen ZC, Pappan K, Mutti NS, He QJ, Denton M, Zhang Y, Kanost MR, Reese JC, Reeck GR (2005) Pectinmethylesterase from the rice weevil, Sitophilus oryzae: cDNA isolation and sequencing, genetic origin, and expression of the recombinant enzyme. J Insect Sci 5:21
    6. Benen JAE, van Alebeek GJWM, Voragen AGJ, Visser J (2003) Pectic esterases. In: Whitaker JR, Voragen AGJ, Wong DWS (eds) Handbook of food enzymology. Dekker, New York, pp 849-56
    7. Micheli F, Sundberg B, Goldberg R, Richard L (2000) Radial distribution pattern of pectin methylesterases across the cambial region of hybrid aspen at activity and dormancy. Plant Physiol 124:191-99 CrossRef
    8. Pilling J, Willmitzer L, Bücking H, Fisahn J (2004) Inhibition of a ubiquitously expressed pectin methyl esterase in Solanum tuberosum L. affects plant growth, leaf growth polarity, and ion partitioning. Planta 219(1):32-0 CrossRef
    9. Siedlecka A, Wiklund S, Péronne MA, Micheli F, Lesniewska J, Sethson I, Edlund U, Richard L, Sundberg B, Mellerowicz EJ (2008) Pectin methyl esterase inhibits intrusive and symplastic cell growth in developing wood cells of Populus. Plant Physiol 146:554-65 CrossRef
    10. Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6(9):414-19 CrossRef
    11. Krichevsky A, Kozlovsky SV, Tian GW, Chen MH, Zaltsman A, Citovsky V (2007) How pollen tubes grow. Dev Biol 303:405-20 CrossRef
    12. Collmer A, Keen NT (1986) The role of pectic enzymes in plant pathogenesis. Annu Rev Phytopathol 24:383-09 CrossRef
    13. Dorokhov YL, Frolova OY, Skurat EV, Ivanov PA, Gasanova TV, Sheveleva AA, Ravin NV, Makinen KM, Klimyuk VI, Skryabin KG, Gleba YY, Atabekov JG (2006) A novel function for a ubiquitous plant enzyme pectin methylesterase: the enhancer of RNA silencing. FEBS Lett 580:3872-878 CrossRef
    14. Will-Karp M, Santeliz J, Karp CL (2001) The germless theory of allergic disease: revisiting the hygiene hypothesis. Nat Rev Immunol 1(1):69-5 CrossRef
    15. Esteve C, Montealegre C, Marina ML, García MC (2012) Analysis of olive allergens. Talanta 92:1-4 CrossRef
    16. Salamanca G, Rodríguez R, Quiralte J, Moreno C, Pascual CY, Barber D, Villalba M (2010) Pectin methylesterases of pollen tissue, a major allergen in olive tree. FEBS J 277(13):2729-739 CrossRef
    17. Wu S, Zhang Y (2010) SEGMER: identifying protein sub-structural similarity by segmental threading. Structure 18:858-67 CrossRef
    18. Kozakov D, Hall DR, Beglov D, Brenke R, Comeau SR, Shen Y, Li K, Zheng J, Vakili P, Paschalidis IC, Vajda S (2010) Achieving reliability and high accuracy in automated protein docking: Cluspro, PIPER, SDU, and stability analysis in CAPRI rounds 13-9. Proteins 78:3124-130 CrossRef
    19. Markovic O, Janecek S (2004) Pectin methylesterases: sequence-structural features and phylogenetic relationships. Carbohydr Res 339:2281-295 CrossRef
    20. Johansson K, El-Ahmad M, Friemann R, J?rnvall H, Markovic O, Eklund H (2002) Crystal structure of plant pectin methylesterase. FEBS Lett 514(2-):243-49 CrossRef
    21. Di Matteo A, Giovane A, Raiola L, Camardella D, Bonivento G, De Lorenzo F, Cervone D, Bellincampi D, Tsernoglou (2005) Structural basis for the interaction between pectin methylesterase and a specific inhibitor protein. Plant Cell 17:849-58 CrossRef
    22. Sarika AM, Akram M, Iquebal MA, Naimuddin K (2010) Prediction of MHC binding peptides and epitopes from coat protein of mungbean yellow mosaic india virus-Ub05. J Proteomics Bioinform 3:173-78 CrossRef
    23. Gomase VS, Waghmare SB, Jadhav B, Kale KV (2009) Mapping of MHC class binding nonamers from lipid binding protein of Ascaridia galli. Gene Ther Mol Biol 13:10-4
    24. Thonar C, Liners F, Van Cutsem P (2006) Polymorphism and modulation of cell wall esterase enzyme activities in the chicory root during the growing season. J Exp Bot 57(1):81-9 CrossRef
    25. Bordenave M (1996) Analysis of pectin methyl esterases. In: Linskens HF, Jackson JF (ed) Plant cell wall analysis (Modern methods of plant analysis). Springer, Heidelberg, pp 165-80
    26. Ding JLC, Hsu JSF, Wang MMC, Tzen JTC (2002) Purification and glycosylation analysis of an acidic pectin methylesterase in jelly fig ( / Ficus awkeotsang) achenes. J Agric Food Chem 50(10):2920-925 CrossRef
    27. Bosch M, Hepler PK (2005) Pectin methylesterases and pectin dynamics in pollen tubes. Plant Cell 17(12):3219-226 CrossRef
    28. Bosch M, Cheung AY, Hepler PK (2005) Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol 138(3):1334-346 CrossRef
    29. Pelloux J, Rusterucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 12(6):267-77 CrossRef
    30. Hamman-Khalifa A, Castro AJ, Jimenez-Lopez JC, Rodríguez-García MI, Alché JD (2008) Olive cultivar origin is a major cause of polymorphism for Ole e 1 pollen allergen. BMC Plant Biol 8:10 CrossRef
    31. Jimenez-Lopez JC, Morales S, Castro AJ, Volkmann D, Rodríguez-García MI, Alché JD (2012) Characterization of profilin polymorphism in pollen with a focus on multifunctionality. PLoS One 7(2):e30878 CrossRef
    32. Dorokhov YL, Skurat EV, Frolova OY, Gasanova TV, Ivanov PA, Ravin NV, Skryabin KG, Makinen KM, Klimyuk VI, Gleba YY, Atabekov JG (2006) Role of the leader sequence in tobacco pectin methylesterase secretion. FEBS Lett 580(13):3329-334 CrossRef
    33. Ciardiello MA, D'Avino R, Amoresano A, Tuppo L, Carpentieri A, Carratore V, Tamburrini M, Giovane A, Pucci P, Camardella L (2008) The peculiar structural features of kiwi fruit pectin methylesterase: amino acid sequence, oligosaccharides structure, and modeling of the interaction with its natural proteinaceous inhibitor. Proteins 71(1):195-06 CrossRef
    34. Giovane A, Quagliuolo L, Castaldo D, Servillo L, Balestrieri C (1990) Pectin methyl esterase from Actinidia chinensis fruits. Phytochemistry 29:2821-823 CrossRef
    35. Randall GD, Karel GJ (1996) Purification and characterization of a thermally tolerant pectin methylesterase from a commerical Valencia fresh frozen orange juice. Agric Food Chem 44:458-62 CrossRef
    36. Hsiao ES, Chen JC, Tsai HY, Khoo KH, Chen ST, Tzen JT (2009) Determination of N-glycosylation site and glycan structures of pectin methylesterase in jelly fig ( / Ficus awkeotsang) Achenes. J Agric Food Chem 57(15):6757-763 CrossRef
    37. Warren ME, Kester H, Benen J, Colangelo J, Visser J, Bergmann C, Orlando R (2002) Studies on the glycosylation of wild-type and mutant forms of Aspergillus niger pectin methylesterase. Carbohydr Res 337(9):803-12 CrossRef
    38. Markovic O, Jornvall H (1992) Disulfide bridges in tomato pectinesterase - variations from pectinesterases of other species - conservation of possible active-site segments. Protein Sci 1(10):1288-292 CrossRef
    39. D'Avino R, Camardella L, Christensen TMIE, Giovane A, Servillo L (2003) Tomato pectin methylesterase: modeling, fluorescence, and inhibitor interaction studies - comparison with the bacterial ( / Erwinia chrysanthemi) enzyme. Proteins 53(4):830-39 CrossRef
    40. Jenkins J, Mayans O, Smith D, Worboys K, Pickersgill RW (2001) Three-dimensional structure of Erwinia chrysanthemi pectin methylesterase reveals a novel esterase active site. J Mol Biol 305(4):951-60 CrossRef
    41. Johansson K, El-Ahmad M, Friemanna R, Jornvall H, Markovic O, Eklund H (2002) Crystal structure of plant pectin methylesterase. FEBS Lett 514(2-):243-49 CrossRef
    42. Fries M, Ihrig J, Brocklehurst K, Shevchik VE, Pickersgill RW (2007) Molecular basis of the activity of the phytopathogen pectin methylesterase. EMBO J 26:3879-887 CrossRef
    43. Duwe B, Khanh NQ (1996) Site-directed mutagenesis of the active site of pectin methylesterase from Aspergillus niger RH5344. Biotechnol Lett 18(6):621-26 CrossRef
    44. Greenwood CT, Milne EA (1968) Starch degrading and synthesizing enzymes: a discussion of their properties and action patterns. Adv Carbohydr Chem Biochem 23:282-66
    45. Limberg G, Korner R, Buchholt HC, Christensen TMIE, Roepstorff P, Mikkelsen JD (2000) Analysis of pectin structure part 1 - analysis of different deesterification mechanisms for pectin by enzymatic fingerprinting using endopectin lyase and endopolygalacturonase II from A. niger. Carbohydr Res 327(3):293-07 CrossRef
    46. Ralet MC, Dronnet V, Buchholt HC, Thibault JF (2001) Enzymatically and chemically de-esterified lime pectins: characterisation, polyelectrolyte behaviour and calcium binding properties. Carbohydr Res 336(2):117-25 CrossRef
    47. Duvetter T, Fraeye I, Sila DN, Verlent I, Smout C, Hendrickx M, Van Loey A (2006) Mode of de-esterification of alkaline and acidic pectin methyl esterases at different pH conditions. J Agric Food Chem 54(20):7825-831 CrossRef
    48. Goldberg R, Pierron M, Bordenave M, Breton C, Morvan C, du Penhoat CH (2001) Control of mung bean pectinmethylesterase isoform activities - influence of pH and carboxyl group distribution along the pectic chains. J Biol Chem 276(12):8841-847 CrossRef
    49. Kim Y, Teng Q, Wicker L (2005) Action pattern of Valencia orange PME deesterification of high methoxyl pectin and characterization of modified pectins. Carbohydr Res 340(17):2620-629 CrossRef
    50. Irifune K, Nishida T, Egawa H, Nagatani A (2004) Pectin methylesterase inhibitor cDNA from kiwi fruit. Plant Cell Rep 23(5):333-38 CrossRef
    51. Balestrieri C, Castaldo D, Giovane A, Quagliuolo L, Servillo L (1990) A glycoprotein inhibitor of pectin methylesterase in kiwi fruit (Actinidia chinensis). Eur J Biochem 193:183-87 CrossRef
    52. Camardella L, Carratore V, Ciardiello MA, Servillo L, Balestrieri C, Giovane A (2000) Kiwi protein inhibitor of pectin methylesterase. Amino-acid sequence and structural importance of two disulfide bridges. Eur J Biochem 267(14):4561-565 CrossRef
    53. Mattei B, Raiola A, Caprari C, Federici L, Bellincampi D, De Lorenzo G, Cervone F, Giovane A, Camardella L (2002) Studies on plant inhibitors of pectin modifying enzymes: Polygalacturonase- inhibiting protein (PGIP) and pectin methylesterase inhibitor (PMEI). In: Teeri TT, Svensson B, Gilbert HJ, Feizi T (eds) Carbohydrate bioengineering: interdisciplinary approaches. Royal Society of Chemistry, Cambridge, pp 160-67
    54. Giovane A, Balestrieri C, Quagliuolo L, Castaldo D, Servillo L (1995) A glycoprotein inhibitor of pectin methylesterase in kiwi fruit - purification by affinity chromatography and evidence of a ripening-related precursor. Eur J Biochem 233(3):926-29 CrossRef
    55. Jiang CM, Lai YJ, Chang WH, Wu MC, Chang HM (2001) Pectinesterase inhibitor in jelly fig ( / Ficus awkeotsang Makino) achenes. J Food Sci 66:225-28 CrossRef
    56. Jiang CM, Li CP, Chang JC, Chang HM (2002) Characterization of pectinesterase inhibitor in jelly fig (Ficus awkeotsang Makino) achenes. J Agric Food Chem 50:4890-894 CrossRef
    57. Ciardiello MA, Tamburrini M, Tuppo L, Carratore V, Giovane A, Mattei B, Camardella L (2004) Pectin methylesterase from kiwi and kaki fruits: purification, characterization, and role of pH in the enzyme regulation and interaction with the kiwi proteinaceous inhibitor. J Agric Food Chem 52(25):7700-703 CrossRef
    58. Dedeurwaerder S, Menu-Bouaouiche L, Mareck A, Lerouge P, Guerineau F (2009) Activity of an atypical Arabidopsis thaliana pectin methylesterase. Planta 229(2):311-21 CrossRef
    59. McMillan GP, Perombelon MCM (1995) Purification and characterization of a high pI pectin methylesterase isozyme and its inhibitor from tubers of Solanum tuberosum subsp. Tuberosum cv. Katahdin. Physiol Mol Plant Pathol 46:413-27 CrossRef
    60. Duvetter T, Van Loey A, Smout C, Verlent I, Ly-Nguyen B, Hendrickx M (2005) Aspergillus aculeatus pectin methylesterase: study of the inactivation by temperature and pressure and the inhibition by pectin methylesterase inhibitor. Enzyme Microb Technol 36(4):385-90 CrossRef
    61. Wang P, Sidney J, Dow C, Mothe B, Sette A, Peters B (2008) A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol 4:e1000048 CrossRef
    62. Blythe MJ, Flower DR (2005) Benchmarking B cell epitope prediction: underperformance of existing methods. Protein Sci 14:246-48 CrossRef
    63. Dall'Antonia F, Gieras A, Devanaboyina SC, Valenta R, Keller W (2011) Prediction of IgE-binding epitopes by means of allergen surface comparison and correlation to cross-reactivity. Prediction of IgE-binding epitopes by means of allergen surface comparison and correlation to cross-reactivity. J Allergy Clin Immunol 128(4):872-79 CrossRef
    64. de Lalla C, Sturniolo T, Abbruzzese L, Hammer J, Sidoli A, Sinigaglia F, Panina-Bordignon P (1999) Cutting edge: identification of novel T cell epitopes in Lol p5a by computational prediction. J Immunol 163:1725-729
    65. García-Casado G, Pacios LF, Díaz-Perales A, Sánchez-Monge R, Lombardero M, García-Selles FJ, Polo F, Barber D, Salcedo G (2003) Identification of IgE-binding epitopes of the major peach allergen Pru p 3. J Allergy Clin Immunol 112(3):599-05 CrossRef
    66. Ball T, Fuchs T, Sperr WR, Valent P, Vangelista L, Kraft D, Valenta R (1999) B-cell epitopes of the major timothy grass pollen allergen, Phl p 1, revealed by gene fragmentation as candidates for immunotherapy. FASEB J 13:1277-290
    67. Midoro-Horiuti T, Schein CH, Mathura V, Braun W, Czerwinski EW, Togawa A, Kondo Y, Oka T, Watanabe M, Goldbluma RM (2006) Structural basis for epitope sharing between group 1 allergens of cedar pollen. Mol Immunol 43(6):509-18 CrossRef
    68. Jimenez-Lopez JC, Gachomo WE, Ariyo O, Baba-Moussa L, Kotchoni SO (2012) Specific conformational epitope features of pathogenesis-related proteins mediating cross-reactivity between pollen and food allergens. Mol Biol Rep 39(1):123-30 CrossRef
    69. Radauer C, Willerroiderw M, Fuchs H, Hoffmann K, Thalhamerw J, Ferreira F, Scheiner O, Breiteneder H (2006) Cross-reactive and species-specific immunoglobulin E epitopes of plant profilins: an experimental and structure-based analysis. Clin Exp Allergy 36:920-29 CrossRef
    70. Jahn-Schmid B, Kelemen P, Himly M, Bohle B, Fischer G, Ferreira F, Ebner C (2002) The T cell response to art v 1, the major mugwort pollen allergen, is dominated by one epitope. J Immunol 169:6005-011
    71. Oezguen N, Zhou B, Negi SS, Ivanciuc O, Schein CH, Labesse G, Braun W (2008) Comprehensive 3D-modeling of allergenic proteins and amino acid composition of potential conformational IgE epitopes. Mol Immunol 45:3740-747 CrossRef
    72. Wolff N, Yannai S, Karin N, Levy Y, Reifen R, Dalal I, Cogan U (2004) Identification and characterization of linear B-cell epitopes of beta-globulin, a major allergen of sesame seeds. J Allergy Clin Immunol 114:1151-158 CrossRef
    73. Brinda KV, Vishveshwara S (2005) Oligomeric protein structure networks: insights into protein-protein interactions. BMC Bioinforma 6:296 CrossRef
    74. Sinha N, Mohan S, Lipschultz CA, Smith-Gill SJ (2002) Differences in electrostatic properties at antibody-antigen binding sites: implications for specificity and cross-reactivity. Biophys J 83:2946-968 CrossRef
  • 作者单位:Jose C. Jimenez-Lopez (1) (4)
    Simeon O. Kotchoni (2) (3)
    María I. Rodríguez-García (4)
    Juan D. Alché (4)

    1. Department of Biological Sciences, College of Sciences, Purdue University, 201 S. University Street, West Lafayette, IN, 47906, USA
    4. Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, High Council for Scientific Research (CSIC), Profesor Albareda 1, Granada, 18008, Spain
    2. Department of Biology, Rutgers University, 315 Penn St., Camden, NJ, 08102, USA
    3. Center for Computational and Integrative Biology (CCIB), Rutgers University, 315 Penn St., Camden, NJ, 08102, USA
  • ISSN:0948-5023
文摘
Pectin methylesterases (PMEs), a multigene family of proteins with multiple differentially regulated isoforms, are key enzymes implicated in the carbohydrates (pectin) metabolism of cell walls. Olive pollen PME has been identified as a new allergen (Ole e 11) of potential relevance in allergy amelioration, since it exhibits high prevalence among atopic patients. In this work, the structural and functional characterization of two olive pollen PME isoforms and their comparison with other PME plants was performed by using different approaches: (1) the physicochemical properties and functional-regulatory motifs characterization, (2) primary sequence analysis, 2D and 3D comparative structural features study, (3) conservation and evolutionary analysis, (4) catalytic activity and regulation based on molecular docking analysis of a homologue PME inhibitor, and (5) B-cell epitopes prediction by sequence and structural based methods and protein-protein interaction tools, while T-cell epitopes by inhibitory concentration and binding score methods. Our results indicate that the structural differences and low conservation of residues, together with differences in physicochemical and posttranslational motifs might be a mechanism for PME isovariants generation, regulation, and differential surface epitopes generation. Olive PMEs perform a processive catalytic mechanism, and a differential molecular interaction with specific PME inhibitor, opening new possibilities for PME activity regulation. Despite the common function of PMEs, differential features found in this study will lead to a better understanding of the structural and functional characterization of plant PMEs and help to improve the component-resolving diagnosis and immunotherapy of olive pollen allergy by epitopes identification.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700