Gossypol: phytoalexin of cotton
详细信息    查看全文
  • 作者:Xiu Tian ; Juxin Ruan ; Jinquan Huang ; Xin Fang ; Yingbo Mao…
  • 关键词:cotton ; secondary metabolism ; gossypol ; sesquiterpenoid
  • 刊名:Science China Life Sciences
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:59
  • 期:2
  • 页码:122-129
  • 全文大小:446 KB
  • 参考文献:Abraham, K.J., Pierce, M.L., and Essenberg, M. (1999). The phytoalexins desoxyhemigossypol and hemigossypol are elicited by Xanthomonas in Gossypium cotyledons. Phytochemistry 52, 829–836.CrossRef
    Bell, A.A., Stipanovic, R.D., O¡¯ Brien, D.H., and Fryxell, P.A. (1978). Sesquiterpenoid aldehyde quinones and derivates in pigment glands of Gossypium. Phytochemistry 17, 1297–1305.CrossRef
    Bell, A.A., Stipanovic, R.D.H., Charles R., and Fryxell, P.A. (1975). Antimicrobial terpenoids of Gossypium: hemigossypol, 6-methoxyhemigossypol and 6-deoxyhemigossypol. Phytochemistry 14, 225–231.CrossRef
    Benedict, C.R., Alchanati, I., Harvey, P.J., Liu, J., Stipanovic, R.D., and Bell, A.A. (1995). The enzymatic formation of δ-cadinene from farnesyl diphosphate in extracts of cotton. Phytochemistry 39, 327–331.CrossRef
    Benedict, C.R., Liu, J., and Stipanovic, R.D. (2006). The peroxidative coupling of hemigossypol to (+)- and (-)-gossypol in cottonseed extracts. Phytochemistry 67, 356–361.CrossRef PubMed
    Benedict, C.R., Lu, J.L., Pettigrew, D.W., Liu, J., Stipanovic, R.D., and Williams, H.J. (2001). The cyclization of farnesyl diphosphate and nerolidyl diphosphate by a purified recombinant delta-cadinene synthase. Plant Physiol 125, 1754–1765.PubMedCentral CrossRef PubMed
    Benedict, C.R., Martin, G.S., Liu, J., Puckhaber, L., and Magill, C.W. (2004). Terpenoid aldehyde formation and lysigenous gland storage sites in cotton: variant with mature glands but suppressed levels of terpenoid aldehydes. Phytochemistry 65, 1351–1359.CrossRef PubMed
    Bianchini, G.M., Stipanovic, R.D., and Bell, A.A. (1999). Induction of delta-cadinene synthase and sesquiterpenoid phytoalexins in cotton by Verticillium dahliae. J Agric Food Chem 47, 4403–4406.CrossRef PubMed
    Blackstaffe, L., Shelley, M.D., and Fish, R.G. (1997). Cytotoxicity of gossypol enantiomers and its quinone metabolite gossypolone in melanoma cell lines. Melanoma Res 7, 364–372.CrossRef PubMed
    Bolek, Y., Fidan, M.S., and Oglakcl, M. (2010). Distribution of gossypol glands in cotton (Gossypium hirsutum L.) genotypes. Not Bot Hort Agrobot 38, 81–87.
    Cai, Y., Zhang, H., Zeng, Y., Mo, J., Bao, J., Miao, C., Bai, J., Yan, F., and Chen, F. (2004). An optimized gossypol high-performance liquid chromatography assay and its application in evaluation of different gland genotypes of cotton. J Biosci 29, 67–71.CrossRef PubMed
    Cao, X. (2015). Whole genome sequencing of cottona new chapter in cotton genomics. Sci China Life Sci 58, 515–516.CrossRef PubMed
    Cass, Q.B., Oliveira, R.V., and De Pietro, A.C. (2004). Determination of gossypol enantiomer ratio in cotton plants by chiral higher-performance liquid chromatography. J Agric Food Chem 52, 5822–5827.CrossRef PubMed
    Chattannavar, S.N., Hosagoudar, G.N., and Ashtaputre, S.A. (2010). Crop loss estimation due to foliar diseases in cotton. Karnataka J Agric Sci 23, 602–605.
    Chen, F., Tholl, D., Bohlmann, J., and Pichersky, E. (2011). The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66, 212–229.CrossRef PubMed
    Chen, X., Chen, Y., Heinstein, P., and Davisson, V.J. (1995). Cloning, expression, and characterization of (+)-δ-cadinene synthase: a catalyst for cotton phytoalexin biosynthesis. Arch Biochem Biophys 324, 255–266.CrossRef PubMed
    Dao, V.T., Gaspard, C., Mayer, M., Werner, G.H., Nguyen, S.N., and Michelot, R.J. (2000). Synthesis and cytotoxicity of gossypol related compounds. Eur J Med Chem 35, 805–813.CrossRef PubMed
    Davila-Huerta, G., Hamada, H., Davis, G.D., Stipanovic, R.D., Adams, C.M., and Essenberg, M. (1995). Cadinane-type sesquiterpenes induced in Gossypium cotyledons by bacterial inoculation. Phytochemistry 39, 531–536.CrossRef
    Davin, L.B., Wang, H.B., Crowell, A.L., Bedgar, D.L., Martin, D.M., Sarkanen, S., and Lewis, N.G. (1997). Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275, 362–366.CrossRef PubMed
    Davis, D.A., Low, P.S., and Heinstein, P. (1998). Purification of a glycoprotein elicitor of phytoalexin formation from Verticillium dahliae. Physiol Mol Plant Pathol 52, 259–273.CrossRef
    Davis, E.M., Tsuji, J., Davis, G.D., Pierce, M.L., and Essenberg, M. (1996). Purification of (+)-δ-cadinene synthase, a sesquiterpene cyclase from bacteria-inoculated cotton foliar tissue. Phytochemistry 41, 1047–1055.CrossRef PubMed
    Davis, G.D., and Essenberg, M. (1995). (+)-δ-cadinene is a product of sesquiterpene cyclase activity in cotton. Phytochemistry 39, 553–567.CrossRef
    Dong, C., Ding, Y., Guo, W., and Zhang, T. (2007). Fine mapping of the dominant glandless gene Gl2e in Sea-island cotton (Gossypium barbadense L.). Chin Sci Bull 52, 3105–3109.CrossRef
    Dong, J., Chen, C., and Chen, Z. (2003). Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51, 21–37.CrossRef PubMed
    Dowd, M.K., and Pelitire, S.M. (2006). Isolation of 6-methoxy gossypol and 6,6¡ä-dimethoxy gossypol from Gossypium barbadense Sea Island cotton. J Agric Food Chem 54, 3265–3270.CrossRef PubMed
    Enjuto, M., Balcells, L., Campos, N., Caelles, C., Arro, M., and Boronat, A. (1994). Arabidopsis thaliana contains two differentially expressed 3-hydroxy-3-methylglutaryl-CoA reductase genes, which encode microsomal forms of the enzyme. Proc Natl Acad Sci USA 91, 927–931.PubMedCentral CrossRef PubMed
    Eulgem, T., and Somssich, I.E. (2007). Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10, 366–371.CrossRef PubMed
    Fang, X., Yang, C., Wei, Y.K., Ma, Q., Yang, L., and Chen, X. (2011). Genomics grand for diversified plant secondary metabolites. Plant Div Res 33, 53–64.
    Fryxell, P.A. (1965). A revision of the australian species of Gossypium with observations on the occurrence of Thespesia in Australia. Aust J Bot 13, 71–102.CrossRef
    Gennadios, H.A., Gonzalez, V., Di Costanzo, L., Li, A., Yu, F., Miller, D.J., Allemann, R.K., and Christianson, D.W. (2009). Crystal structure of (+)-delta-cadinene synthase from Gossypium arboreum and evolutionary divergence of metal binding motifs for catalysis. Biochemistry 48, 6175–6183.PubMedCentral CrossRef PubMed
    Guchelaar, H.J., ten Napel, C.H., de Vries, E.G., and Mulder, N.H. (1994). Clinical, toxicological and pharmaceutical aspects of the antineoplastic drug taxol: a review. Clin Oncol (R Coll Radiol) 6, 40–48.CrossRef
    Heinstein, P. (1985). Stimulation of sesquiterpene aldehyde formation in Gossypium arboreum cell suspension cultures by conidia of Verticillium dahliae. J Nat Prod 48, 907–915.CrossRef
    Joost, O., Bianchini, G., Bell, A.A., Benedict, C.R., and Magill, C.W. (1995). Differential induction of 3-hydroxy-3-methylglutaryl CoA reductase in two cotton species following inoculation with Verticillium. Mol Plant Microbe Interact 8, 880–885.CrossRef PubMed
    Kim, B.R., Nam, H.Y., Kim, S.U., Pai, T., and Chang, Y.J. (2004). Reverse transcription quantitative-PCR of three genes with high homology encoding 3-hydroxy-methylglutaryl-CoA reductase in rice. Biotechnol Lett 26, 985–988.CrossRef PubMed
    Kim, I.C., Waller, D.P., Marcelle, G.B., Cordell, G.A., Fong, H.H., Pirkle, W.H., Pilla, L., and Matlin, S.A. (1984). Comparative in vitro spermicidal effects of (+/-)-gossypol, (+)-gossypol, (-)-gossypol and gossypolone. Contraception 30, 253–259.CrossRef PubMed
    Kirby, J., and Keasling, J.D. (2009). Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60, 335–355.CrossRef PubMed
    Kong, G., Daud, M.K., and Zhu, S. (2010). Effects of pigment glands and gossypol on growth, development and insecticide-resistance of cotton bollworm (Heliothis armigera (H¨¹bner)). Crop Protect 29, 813–819.CrossRef
    Li, L., Li, Z., Wang, K., Zhao, S., Feng, J., Li, J., Yang, P., Liu, Y., Wang, L., Li, Y., Shang, H., and Wang, Q. (2014). Design, synthesis, and biological activities of aromatic gossypol Schiff base derivatives. J Agric Food Chem 62, 11080–11088.CrossRef PubMed
    Liu, C., Heinstein, P., and Chen, X. (1999a). Expression pattern of genes encoding farnesyl diphosphate synthase and sesquiterpene cyclase in cotton suspension-cultured cells treated with fungal elicitors. Mol Plant-Microbe Interact 12, 1095–1104.CrossRef PubMed
    Liu, J., Benedict, C.R., Stipanovic, R.D., and Bell, A.A. (1999b). Purification and characterization of S-adenosyl-L-methionine: desoxyhemigossypol-6-O-methyltransferase from cotton plants. An enzyme capable of methylating the defense terpenoids of cotton. Plant Physiol 121, 1017–1024.PubMed
    Liu, J., Stipanovic, R.D., Bell, A.A., Puckhaber, L.S., and Magill, C.W. (2008). Stereoselective coupling of hemigossypol to form (+)-gossypol in moco cotton is mediated by a dirigent protein. Phytochemistry 69, 3038–3042.CrossRef PubMed
    Liu, X., Zhao, B., Zheng, H., Hu, Y., Lu, G., Yang, C., Chen, J., Chen, J., Chen, D., Zhang, L., Zhou, Y., Wang, L., Guo, W., Bai, Y., Ruan, J., Shangguan, X., Mao, Y., Shan, C., Jiang, J., Zhu, Y., Jin, L., Kang, H., Chen, S., He, X., Wang, R., Wang, Y., Chen, J., Wang, L., Yu, S., Wang, B., Wei, J., Song, S., Lu, X., Gao, Z., Gu, W., Deng, X., Ma, D., Wang, S., Liang, W., Fang, L., Cai, C., Zhu, X., Zhou, B., Jeffrey Chen, Z., Xu, S., Zhang, Y., Wang, S., Zhang, T., Zhao, G., and Chen, X. (2015). Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci Rep 5, 14139.PubMedCentral CrossRef PubMed
    Luo, P., Wang, Y., Wang, G., Essenberg, M., and Chen, X. (2001). Molecular cloning and functional identification of (+)-δ-cadinene- 8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. Plant J 28, 95–104.CrossRef PubMed
    Mao, Y., Cai, W., Wang, J., Hong, G., Tao, X., Wang, L., Huang, Y., and Chen, X. (2007). Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25, 1307–1313.CrossRef PubMed
    Mao, Y., Tao, X., Xue, X., Wang, L., and Chen, X. (2011). Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Res 20, 665–673.PubMedCentral CrossRef PubMed
    Mellon, J.E., Zelaya, C.A., and Dowd, M.K. (2011). Inhibitory effects of gossypol-related compounds on growth of Aspergillus flavus. Lett Appl Microbiol 52, 406–412.CrossRef PubMed
    Meng, Y., Jia, J., Liu, C., Liang, W., Heinstein, P., and Chen, X. (1999). Coordinated accumulation of (+)-δ-cadinene synthase mRNAs and gossypol in developing seeds of Gossypium hirsutum and a new member of the cad1 family from G. arboreum. J Nat Prod 62, 248–252.CrossRef PubMed
    Muhlemann, J.K., Klempien, A., and Dudareva, N. (2014). Floral volatiles: from biosynthesis to function. Plant Cell Environ 37, 1936–1949.CrossRef PubMed
    Paddon, C.J., and Keasling, J.D. (2014). Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12, 355–367.CrossRef PubMed
    Palle, S.R., Campbell, L.M., Pandeya, D., Puckhaber, L., Tollack, L.K., Marcel, S., Sundaram, S., Stipanovic, R.D., Wedegaertner, T.C., Hinze, L., and Rathore, K.S. (2013). RNAi-mediated Ultra-low gossypol cottonseed trait: performance of transgenic lines under field conditions. Plant Biotechnol J 11, 296–304.CrossRef PubMed
    Paterson, A.H., Wendel, J.F., Gundlach, H., Guo, H., Jenkins, J., Jin, D., Llewellyn, D., Showmaker, K.C., Shu, S., Udall, J., Yoo, M.J., Byers, R., Chen, W., Doron-Faigenboim, A., Duke, M.V., Gong, L., Grimwood, J., Grover, C., Grupp, K., Hu, G., Lee, T.H., Li, J., Lin, L., Liu, T., Marler, B.S., Page, J.T., Roberts, A.W., Romanel, E., Sanders, W.S., Szadkowski, E., Tan, X., Tang, H., Xu, C., Wang, J., Wang, Z., Zhang, D., Zhang, L., Ashrafi, H., Bedon, F., Bowers, J.E., Brubaker, C.L., Chee, P.W., Das, S., Gingle, A.R., Haigler, C.H., Harker, D., Hoffmann, L.V., Hovav, R., Jones, D.C., Lemke, C., Mansoor, S., ur Rahman, M., Rainville, L.N., Rambani, A., Reddy, U.K., Rong, J.K., Saranga, Y., Scheffler, B.E., Scheffler, J.A., Stelly, D.M., Triplett, B.A., Van Deynze, A., Vaslin, M.F., Waghmare, V.N., Walford, S.A., Wright, R.J., Zaki, E.A., Zhang, T., Dennis, E.S., Mayer, K.F., Peterson, D.G., Rokhsar, D.S., Wang, X., and Schmutz, J. (2012). Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492, 423–427.CrossRef PubMed
    Przybylski, P., Pyta, K., Remlein-Starosta, D., Schroeder, G., Brzezinski, B., and Bartl, F. (2009). Antifungal activity of alkyl and heterocyclic aza-derivatives of gossypol as well as their complexes with NaClO4 against Fusarium oxysporum f. sp. lupini. Bioorg Med Chem Lett 19, 1996–2000.CrossRef PubMed
    Schuler, M.A. (2012). Insect P450s: mounted for battle in their war against toxins. Mol Ecol 21, 4157–4159.CrossRef PubMed
    Seki, H., Ohyama, K., Sawai, S., Mizutani, M., Ohnishi, T., Sudo, H., Akashi, T., Aoki, T., Saito, K., and Muranaka, T. (2008). Licorice beta-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin. Proc Natl Acad Sci USA 105, 14204–14209.PubMedCentral CrossRef PubMed
    Seki, H., Sawai, S., Ohyama, K., Mizutani, M., Ohnishi, T., Sudo, H., Fukushima, E.O., Akashi, T., Aoki, T., Saito, K., and Muranaka, T. (2011). Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin. Plant Cell 23, 4112–4123.PubMedCentral CrossRef PubMed
    Shelley, M.D., Hartley, L., Fish, R.G., Groundwater, P., Morgan, J.J., Mort, D., Mason, M., and Evans, A. (1999). Stereo-specific cytotoxic effects of gossypol enantiomers and gossypolone in tumour cell lines. Cancer Lett 135, 171–180.CrossRef PubMed
    Stipanovic, R.D., Bell, A.A., Mace, M.E., and Howell, C.R. (1975). Antimicrobial terpenoids of Gossypium: 6-methoxygossypol and 6,6¡ä -dimethoxygossypol. Phytochemistry 14, 1077–1081.CrossRef
    Stipanovic, R.D., Lopez, J.D., Jr., Dowd, M.K., Puckhaber, L.S., and Duke, S.E. (2006a). Effect of racemic and (+)- and (-)-gossypol on the survival and development of Helicoverpa zea larvae. J Chem Ecol 32, 959–968.CrossRef PubMed
    Stipanovic, R.D., Lopez, J.D., Jr., Dowd, M.K., Puckhaber, L.S., and Duke, S.E. (2008). Effect of racemic, (+)- and (-)-gossypol on survival and development of Heliothis virescens larvae. Environ Entomol 37, 1081–1085.CrossRef PubMed
    Stipanovic, R.D., Mace, M.E., Bell, A.A., and Beier, R.C. (1992). The role of free radicals in the decomposition of the phytoalexin desoxyhemigossypol. J Chem Soc Perkin Trans 23, 3189–3192.CrossRef
    Stipanovic, R.D., Puckhaber, L.S., and Bell, A.A. (2006b). Ratios of (+)- and (-)-gossypol in leaves, stems, and roots of selected accessions of Gossypium hirsutum var. marie galante (Watt) Hutchinson. J Agric Food Chem 54, 1633–1637.CrossRef PubMed
    Stipanovic, R.D., Puckhaber, L.S., Bell, A.A., Percival, A.E., and Jacobs, J. (2005). Occurrence of (+)- and (-)-gossypol in wild species of cotton and in Gossypium hirsutum Var. marie-galante (Watt) Hutchinson. J Agric Food Chem 53, 6266–6271.CrossRef PubMed
    Sumner, L.W., Lei, Z., Nikolau, B.J., and Saito, K. (2015). Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects. Nat Prod Rep 32, 212–229.CrossRef PubMed
    Sunilkumar, G., Campbell, L.M., Puckhaber, L., Stipanovic, R.D., and Rathore, K.S. (2006). Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA 103, 18054–18059.PubMedCentral CrossRef PubMed
    Tan, X., Liang, W., Liu, C., Luo, P., Heinstein, P., and Chen, X. (2000). Expression pattern of (+)-δ-cadinene synthase genes and biosynthesis of sesquiterpene aldehydes in plants of Gossypium arboreum L. Planta 210, 644–651.CrossRef PubMed
    Tao, X., Xue, X., Huang, Y., Chen, X., and Mao, Y. (2012). Gossypol-enhanced P450 gene pool contributes to cotton bollworm tolerance to a pyrethroid insecticide. Mol Ecol 21, 4371–4385.CrossRef PubMed
    Tholl, D. (2015). Biosynthesis and biological functions of terpenoids in plants. Adv Biochem Eng Biotechnol 148, 63–106.PubMed
    Turco, E., Vizzuso, C., Franceschini, S., Ragazzi, A., and Stefanini, F.M. (2007). The in vitro effect of gossypol and its interaction with salts on conidial germination and viability of Fusarium oxysporum sp. vasinfectum isolates. J Appl Microbiol 103, 2370–2381.CrossRef PubMed
    Veech, J.A., Stipanovic, R.D., and Bell, A.A. (1976). Peroxidative conversion of hemogossypol to gossypol. A revised structure for isohemigossypol. J Chem Soc Chem Commun, 144–145.
    Wagner, T.A., Liu, J., Puckhaber, L.S., Bell, A.A., Williams, H., and Stipanovic, R.D. (2015). RNAi construct of a cytochrome P450 gene CYP82D109 blocks an early step in the biosynthesis of hemigossypolone and gossypol in transgenic cotton plants. Phytochemistry 115, 59–69.CrossRef PubMed
    Wang, K., Wang, Z., Li, F., Ye, W., Wang, J., Song, G., Yue, Z., Cong, L., Shang, H., Zhu, S., Zou, C., Li, Q., Yuan, Y., Lu, C., Wei, H., Gou, C., Zheng, Z., Yin, Y., Zhang, X., Liu, K., Wang, B., Song, C., Shi, N., Kohel, R.J., Percy, R.G., Yu, J., Zhu, Y., Wang, J., and Yu, S. (2012). The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44, 1098–1103.CrossRef PubMed
    Wang, Y., Davila-Huerta, G., and Essenberg, M. (2003). 8-Hydroxy-(+)-δ-cadinene is a precursor to hemigossypol in Gossypium hirsutum. Phytochemistry 63, 219–225.CrossRef
    Williams, J.L., Ellers-Kirk, C., Orth, R.G., Gassmann, A.J., Head, G., Tabashnik, B.E., and Carriere, Y. (2011). Fitness cost of resistance to Bt cotton linked with increased gossypol content in pink bollworm larvae. PLoS One 6, e21863.PubMedCentral CrossRef PubMed
    Wu, J., and Baldwin, I.T. (2010). New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44, 1–24.CrossRef PubMed
    Xu, Y., Wang, J., Wang, S., Wang, J., and Chen, X. (2004). Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiol 135, 507–515.PubMedCentral CrossRef PubMed
    Yang, C., Lu, S., Mao, Y., Wang, L., and Chen, X. (2010). Characterization of two NADPH: cytochrome P450 reductases from cotton (Gossypium hirsutum). Phytochemistry 71, 27–35.CrossRef PubMed
    Yang, C., Wu, X., Ruan, J., Hu, W., Mao, Y., Chen, X., and Wang, L. (2013). Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum). Phytochemistry 96, 46–56.CrossRef PubMed
    Yildirim-Aksoy, M., Lim, C., Dowd, M.K., Wan, P.J., Klesius, P.H., and Shoemaker, C. (2004). In vitro inhibitory effect of gossypol from gossypol-acetic acid, and (+)- and (-)-isomers of gossypol on the growth of Edwardsiella ictaluri. J Appl Microbiol 97, 87–92.CrossRef PubMed
    Yin, J., Jin, L., Chen, F., Wang, X., Kitaygorodskiy, A., and Jiang, Y. (2011). Novel O-glycosidic gossypol isomers and their bioactivities. Carbohydr Res 346, 2070–2074.CrossRef PubMed
    Yoshikuni, Y., Martin, V.J., Ferrin, T.E., and Keasling, J.D. (2006). Engineering cotton (+)-delta-cadinene synthase to an altered function: germacrene D-4-ol synthase. Chem Biol 13, 91–98.CrossRef PubMed
    Yuan, Y., Chen, Y., Tang, C., Jing, S., Liu, S., Pan, J., Kohel, R.J., and Zhang, T. (2000). Effects of the dominant glandless gene Gl2e on agronomic and fibre characters of Upland cotton. Plant Breed 118, 59–64.CrossRef
    Zhang, T., Hu, Y., Jiang, W., Fang, L., Guan, X., Chen, J., Zhang, J., Saski, C.A., Scheffler, B.E., Stelly, D.M., Hulse-Kemp, A.M., Wan, Q., Liu, B., Liu, C., Wang, S., Pan, M., Wang, Y., Wang, D., Ye, W., Chang, L., Zhang, W., Song, Q., Kirkbride, R.C., Chen, X., Dennis, E., Llewellyn, D.J., Peterson, D.G., Thaxton, P., Jones, D.C., Wang, Q., Xu, X., Zhang, H., Wu, H., Zhou, L., Mei, G., Chen, S., Tian, Y., Xiang, D., Li, X., Ding, J., Zuo, Q., Tao, L., Liu, Y., Li, J., Lin, Y., Hui, Y., Cao, Z., Cai, C., Zhu, X., Jiang, Z., Zhou, B., Guo, W., Li, R., and Chen, Z. (2015). Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33, 531–537.CrossRef PubMed
    Zhang, X., Jiang, T., Yu, Y., Wu, Z., Jiang, S., Lu, K., Feng, X., Liang, S., Lu, Y., Wang, X., and Zhang, D. (2014). Arabidopsis co-chaperonin CPN20 antagonizes Mg-chelatase H subunit to derepress ABA-responsive WRKY40 transcription repressor. Sci China Life Sci 57, 11–21.CrossRef PubMed
    Zhu, S., Reddy, N., and Jiang, Y. (2005). Introgression of a gene for delayed pigment gland morphogenesis from Gossypium bickii into upland cotton. Plant Breed 124, 590–594.CrossRef
  • 作者单位:Xiu Tian (1)
    Juxin Ruan (2)
    Jinquan Huang (2)
    Xin Fang (2)
    Yingbo Mao (2)
    Lingjian Wang (2)
    Xiaoya Chen (2) (3)
    Changqing Yang (2)

    1. School of Life Sciences, Nanjing University, Nanjing, 210023, China
    2. National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
    3. Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai, 201602, China
  • 刊物主题:Life Sciences, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1869-1889
文摘
Sesquiterpenoids are a class of 15-carbon secondary metabolites that play diverse roles in plant adaptation to environment. Cotton plants accumulate a large amount of sesquiterpene aldehydes (including gossypol) as phytoalexins against pathogens and herbivores. They are stored in pigment glands of aerial organs and in epidermal layers of roots. Several enzymes of gossypol biosynthesis pathway have been characterized, including 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and farnesyl diphosphate synthase (FPS) that catalyze the formation of the precursor farnesyl diphosphate (FPP), (+)-δ-cadinene synthase (CDN) which is the first enzyme committed to gossypol biosynthesis, and the downstream enzymes of CYP706B1 and methyltransferase. Expressions of these genes are tightly regulated during cotton plants development and induced by jasmonate and fungi elicitors. The transcription factor GaWRKY1 has been shown to be involved in gossypol pathway regulation. Recent development of new genomic platforms and methods and releases of diploid and tetraploid cotton genome sequences will greatly facilitate the elucidation of gossypol biosynthetic pathway and its regulation. Keywords cotton secondary metabolism gossypol sesquiterpenoid

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700