Fluorescein-N-Methylimidazole Conjugate as Cu2+ Sensor in Mixed Aqueous Media Through Electron Transfer
详细信息    查看全文
  • 作者:Aasif Helal ; Hong-Seok Kim ; Zain H. Yamani…
  • 关键词:Fluorescent chemosensor ; Copper ion ; selective ; Fluorescein ; N ; methylimidazole electron transfer
  • 刊名:Journal of Fluorescence
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:26
  • 期:1
  • 页码:1-9
  • 全文大小:1,047 KB
  • 参考文献:1.Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40CrossRef
    2.Yoon J, Kim SK, Singh NJ, Kim KS (2006) Imidazolium receptors for the recognition of anions. Chem Soc Rev 35:355–360PubMed CrossRef
    3.Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Mill Valley, CA
    4.Ghosh A, Trivedi PP, Timbalia SA, Griffin AT, Rahn JJ, Chan SS, Gohil VM (2014) Copper supplementation restores cytochrome c oxidase assembly defect in a mitochondrial disease model of COA6 deficiency. Hum Mol Genet 23:3596–3606PubMed PubMedCentral CrossRef
    5.Hellman NE, Gitlin JD (2002) Ceruloplasmin metabolism and function. Annu Rev Nutr 22:439–458PubMed CrossRef
    6.Olivares C, Solano F (2009) New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Pigm Cell Melanoma Res 22:750–760CrossRef
    7.Klinman JP (2003) The multi-functional topa-quinone copper amine oxidases. Biochim Biophys Acta 1637:131–137CrossRef
    8.Huster D (2014) Introduction to human disorders of copper metabolism. Ann N Y Acad Sci 1314:37–44CrossRef
    9.Savelieff MG, Lee S, Liu Y, Lim MH (2013) Untangling amyloid-β, tau, and metals in Alzheimer’s disease. ACS Chem Biol 8:856–865PubMed CrossRef
    10.Matlack KE, Tardiff DF, Narayan P, Hamamichi S, Caldwell KA, Caldwell GA, Lindquist S (2014) Clioquinol promotes the degradation of metal-dependent amyloid-β (Aβ) oligomers to restore endocytosis and ameliorate Aβ toxicity. Proc Natl Acad Sci U S A 111:4013–4018PubMed PubMedCentral CrossRef
    11.Vonk WI, Kakkar V, Bartuzi P, Jaarsma D, Berger R, Hofker MH, Klomp LW Wijmenga C, Kampinga HH, Sluis B van de (2014) The copper metabolism MURR1 domain protein 1 (COMMD1) modulates the aggregation of misfolded protein species in a client-specific manner. PLoS One 9: 924–928
    12.McDonald AJ, Dibble JP, Evans EG, Millhauser GL (2014) A new paradigm for enzymatic control of α-cleavage and β-cleavage of the prion protein. J Biol Chem 289:803–813PubMed PubMedCentral CrossRef
    13.Xiao G, Fan Q, Wang X, Zhou B (2013) Huntington disease arises from a combinatory toxicity of polyglutamine and copper binding. Proc Natl Acad Sci U S A 110:14995–15000PubMed PubMedCentral CrossRef
    14.Burkhead JL, Lutsenko S (2013) The Role of Copper as a Modifier of Lipid Metabolism. In: Baez R. V. (ed) Lipid Metabolism, InTech, ISBN: 978-953-51-0944-0
    15.Nielsen TS, Jessen N, Jorgensen JO, Moller N, Lund S (2014) Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J Mol Endocrinol 52:R199–R222PubMed CrossRef
    16.Brady DC, Crowe MS, Turski ML, Hobbs GA, Yao X, Chaikuad A, Knapp S, Xiao KS, Campbell L, Thiele DJ, Counter CM (2014) Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature 509:492–496PubMed PubMedCentral CrossRef
    17.WHO guidelines values for chemicals that are of health significance in drinking water, Guidelines for Drinking Water Quality, WHO, Geneva, 3rd Edn, 2008.
    18.Krämer R (1998) Fluorescent chemosensors for Cu2+ ions: fast, selective, and highly sensitive. Angew Chem Int Ed 37:772–773CrossRef
    19.Pourreza N, Hoveizavi R (2005) Simultaneous preconcentration of Cu, Fe and Pb as methylthymol blue complexes on naphthalene adsorbent and flame atomic absorption determination. Anal Chim Acta 549:124–128CrossRef
    20.Becker JS, Zoriy MV, Pickhardt C, Palomero-Gallagher N, Zilles K (2005) Imaging of copper, zinc, and other elements in thin section of human brain samples (hippocampus) by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 77:3208–3216PubMed CrossRef
    21.Otero-Romaní J, Moreda-Piñeiro A, Bermejo-Barrera A, Bermejo-Barrera P (2005) Evaluation of commercial C18 cartridges for trace elements solid phase extraction from seawater followed by inductively coupled plasma-optical emission spectrometry determination. Anal Chim Acta 536:213–218CrossRef
    22.Stankovic D, Roglic G, Mutic J, Andjelkovic I, Markovic M, Manojlovic D (2011) Determination of copper in water by anodic stripping voltammetry using Cu-DPABA–NA/GCE modified electrode. Int J Electrochem Sci 6:5617–5625
    23.Twining B, Baines S, Fisher N, Jacobsen C, Maser J (2003) Quantification and localization of metal within natural plankton cells using a synchrotron x-ray fluorescence microprobe. J Phys IV 104:435–438
    24.Wang M, Zhang D, Li M, Fan M, Ye Y, Y-f Z (2013) A rhodamine-cyclen conjugate as chromogenic and fluorescent chemosensor for copper ion in aqueous media. J Fluoresc 23:417–423PubMed CrossRef
    25.Kim HN, Lee MH, Kim HJ, Kim JS, Yoon J (2008) A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem Soc Rev 37:1465–1472PubMed CrossRef
    26.Mandal S, Mandal SK, Khuda-Bukhsh AR, Goswami S (2015) Pyridoxal based fluorescent chemosensor for detection of copper(II) in solution with moderate selectivity and live cell imaging. J Fluoresc 25:1–11CrossRef
    27.Jung HS, Kwon PS, Lee JW, Kim JI, Hong CS, Kim JW, Yan SH, Lee JY, Lee JH, Joo T, Kim JS (2009) Coumarin-derived Cu2+-selective fluorescence sensor: synthesis, mechanisms, and applications in living cells. J Am Chem Soc 131:2008–2012PubMed CrossRef
    28.Helal A, Rashid MHO, Choi CH, Kim H-S (2011) Chromogenic and fluorogenic sensing of Cu2+ based on coumarin. Tetrahedron 67:2794–2802CrossRef
    29.Helal A, Kim S, Kim H-S (2011) Sensing of cyanide using highly selective thiazole-based Cu2+ chemosensor. Bull Kor Chem Soc 32:3123–3126CrossRef
    30.Zheng H, Zhan X-Q, Biana Q-N, Zhanga X-J (2013) In vivo monitoring of hydrogen sulfide using a cresyl violet-based ratiometric fluorescence probe. Chem Commun 49:429–447CrossRef
    31.Duan Y, Liu M, Sun W, Wang M, Liu S, Li Q (2009) Recent progress on synthesis of fluorescein probes. Mini Rev Org Chem 6:35–43CrossRef
    32.Zhou Y, Li J, Chu K, Liu K, Yao C, Li J (2012) Fluorescence turn-on detection of hypochlorous acid via HOCl-promoted dihydrofluorescein-ether oxidation and its application in vivo. Chem Commun 48:4677–4679CrossRef
    33.Xiong XQ, Song FL, Chen GW, Sun W, Wang JY, Gao P (2013) Construction of long-wavelength fluorescein analogues and their application as fluorescent probes. Chem Eur J 19:6538–6545PubMed CrossRef
    34.An JM, Yan MH, Yang ZY, Li TR, Zhou QX (2013) A turn-on fluorescent sensor for Zn(II) based on fluorescein-coumarin conjugate. Dyes Pigments 99:1–5CrossRef
    35.Kim HJ, Park JE, Choi MG, Ahn S, Chang SK (2010) Selective chromogenic and fluorogenic signalling of Hg2+ ions using a fluorescein-coumarin conjugate. Dyes Pigments 84:54–58CrossRef
    36.Egawa T, Koide Y, Hanaoka K, Komatsu T, Teraia T, Nagano T (2011) Development of a fluorescein analogue, TokyoMagenta, as a novel scaffold for fluorescence probes in red region. Chem Commun 47:4162–4164CrossRef
    37.Ueno T, Urano Y, Setsukinai K, Takakusa H, Kojima H, Kikuchi K, Ohkubo K, Fukuzumi S, Nagano T (2004) Rational principles for modulating fluorescence properties of fluorescein. J Am Chem Soc 126:14079–14085PubMed CrossRef
    38.Bellina F, Cauteruccio S, Montib S, Rossi R (2006) Novel imidazole-based combretastatin a-4 analogues: evaluation of their in vitro antitumor activity and molecular modeling study of their binding to the colchicine site of tubulin. Bioorg Med Chem Lett 16:5757–5762PubMed CrossRef
    39.Bando T, Sugiyama H (2006) Synthesis and biological properties of sequence-specific DNA-alkylating pyrrole − imidazole polyamides. Acc Chem Res 39:935–944PubMed CrossRef
    40.Sun YF, Cui YP (2009) The synthesis, structure and spectroscopic properties of novel oxazolone-, pyrazolone- and pyrazoline-containing heterocycle chromophores. Dyes Pigments 81:27–34CrossRef
    41.Peter W, Wilhelm K (2000) Ionic liquids—new “solutions” for transition metal catalysis angew. Chem. Int. Ed 39:3772–3789
    42.Kumar A, Kim H-S (2015) N-(3-imidazolyl)propyl dansylamide as a selective Hg2+ sensor in aqueous media through electron transfer. Spectrochim Acta A 148:250–254CrossRef
    43.Kumar A, Ghosh MK, Choi C-H, Kim H-S (2015) Selective fluorescence sensing of salicylic acids using a simple pyrenesulfonamide receptor. RSC Adv 5:23613–23621CrossRef
    44.Kumar A, Kim H-S (2015) A pyrenesulfonyl-imidazolium derivative as a selective cyanide ion sensor in aqueous media. New J Chem 39:2935–2942CrossRef
    45.Hens A, Maity A, Rajak KK (2014) N, N coordinating Schiff base ligand acting as a fluorescence sensor for zinc(II) and colorimetric sensor for copper(II), and zinc(II) in mixed aqueous media. Inorg Chim Acta 423:408–420CrossRef
    46.Li ZY, Lin Y, Xia JL, Zhang H, Fan FY, Zeng QB (2011) Synthesis of novel diarylethene compounds containing two imidazole bridge units and tuning of their optical properties. Dyes Pigments 90:245–252CrossRef
    47.Sivaraman G, Chellappa D (2013) Rhodamine based sensor for naked-eye detection and live cell imaging of fluoride ions. J Mater Chem B 1:5768–5772CrossRef
    48.Ding J, Yuan L, Gao L, Chen J (2012) Fluorescence quenching of a rhodamine derivative: selectively sensing Cu2+ in acidic aqueous media. J Lumin 132:1987–1993CrossRef
    49.Sivaraman G, Sathiyaraja V, Chellappa D (2014) Turn-on fluorogenic and chromogenic detection of Fe(III) and its application in living cell imaging. J Lumin 145:480–485CrossRef
    50.Magde D, Wong R, Seybold PG (2002) Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. Photochem Photobiol 75:327–334PubMed CrossRef
    51.Yin W, Zhu H, Wang R (2014) A sensitive and selective fluorescence probe based fluorescein for detection of hypochlorous acid and its application for biological imaging. Dyes Pigments 107:127–132CrossRef
    52.Zheng H, Zhan X-Q, Biana Q-N, Zhanga X-J (2013) Advances in modifying fluorescein and rhodamine fluorophores as fluorescent chemosensors. Chem Commun 49:429–447CrossRef
    53.Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2010) New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110:2620–2640PubMed PubMedCentral CrossRef
    54.Dujols V, Ford F, Czarnik AW (1997) A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. J Am Chem Soc 119:7386–7387CrossRef
    55.Gunnlaugsson T, Leonard JP, Senechal K, Harte AJ (2004) Eu(III)–cyclen–phen conjugate as a luminescent copper sensor: the formation of mixed polymetallic macrocyclic complexes in water. Chem Commun:782–783
    56.Klein G, Kaufmann D, Schurch S, Reymond J-L (2001) A fluorescent metal sensor based on macrocyclic chelation. Chem Commun:561–562
    57.Katoh R, Suzuki K, Furube A, Kotani M, Tokumaru K (2009) Fluorescence quantum yield of aromatic hydrocarbon crystals. J Phys Chem C 113:2961–2965CrossRef
    58.Kavallieratos K, Rosenberg JM, Chen W-Z, Ren T (2005) Fluorescent sensing and selective Pb(II) extraction by a dansylamide ion-exchanger. Am Chem Soc 127:6514–6515CrossRef
    59.Connors KA Binding Constants: the Measurement of Molecular Complex Stability. New York: Wiley, 1987; pp 21–101; 339–343.
    60.Thordarson P (2011) Determining association constants from titration experiments in supramolecular chemistry. Chem Soc Rev 40:1305–1323PubMed CrossRef
    61.Fabbrizzi L, Licchelli M, Pallavicini P, Parodi L (1999) Taglietti A in transition metals in supramolecuar chemistry; sauvage, J. P., Ed. Fluorescent sensors for and with transition metals. John Wiley & Sons Ltd, Chichester
    62.Ci YX (1984) Zhou TZ the coordinated complexes in analytical chemistry. Peking University Press, Beijing
  • 作者单位:Aasif Helal (1)
    Hong-Seok Kim (2)
    Zain H. Yamani (1)
    M. Nasiruzzaman Shaikh (1)

    1. Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
    2. Department of Applied Chemistry, Kyungpook National University, Daegu, 702-701, Republic of Korea
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Biomedicine
    Biophysics and Biomedical Physics
    Biotechnology
    Biochemistry
    Analytical Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-4994
文摘
A new highly selective, chromogenic, and fluorogenic Cu2+ chemosensor, fluorescein-N-methylimidazole conjugate 1, and another fluorescein-N-imidazole conjugate 2 were synthesized and investigated by UV-visible and fluorescence spectroscopy. The sensing of Cu2+ quenches the emission band of 1 at λmax = 525 nm, with an association constant (K a = 1.0 x 107 M−1) and a stoichiometry of 1:1 in a buffered H2O: MeOH solution (4:1, pH = 7.4). The Cu2+ detection limit for chemosensor 1 is 37 nM. The presence of the N-methyl group in 1 increased the Cu2+ binding selectivity, resulting in a stronger binding constant and a broader pH working range (pH 5–10) in comparison to 2. The fluorescence in 1 and 2 is caused by electron transfer phenomenon from the imidazole nitrogen to fluorescein, which is readily inhibited by Cu2+ binding. Keywords Fluorescent chemosensor Copper ion-selective Fluorescein-N-methylimidazole electron transfer

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700