Epigenetic variability in plants: Heritability, adaptability, evolutionary significance
详细信息    查看全文
  • 作者:V. V. Ashapkin ; L. I. Kutueva ; B. F. Vanyushin
  • 关键词:Arabidopsis thaliana ; DNA methylation ; DNA methylome ; epigenetic variability ; epiallele ; epimutation ; adaptation ; evolution
  • 刊名:Russian Journal of Plant Physiology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:63
  • 期:2
  • 页码:181-192
  • 全文大小:223 KB
  • 参考文献:1.Vanyushin, B.F. and Ashapkin, V.V., DNA Methylation in Plants, New York: Nova Sci., 2009.
    2.Law, J.A. and Jacobsen, S.E., Establishing, maintaining and modifying DNA methylation patterns in plants and animals, Nat. Rev. Genet., 2010, vol. 11, pp. 204–220. doi 10.1038/nrg2719CrossRef PubMed PubMedCentral
    3.Vanyushin, B.F. and Ashapkin, V.V., DNA methylation in higher plants: past, present and future, Biochim. Biophys. Acta, 2011, vol. 1809, pp. 360–368. doi 10.1016/jbbagrm.2011.04.006CrossRef PubMed
    4.Feng, S. and Jacobsen, S.E., Epigenetic modifications in plants: an evolutionary perspective, Curr. Opin. Plant Biol., 2011, vol. 14, pp. 179–186. doi 10.1016/jpbi.2010.12.002CrossRef PubMed PubMedCentral
    5.Zemach, A., Kim, M.Y., Hsieh, P.-H., Coleman-Derr, D., Eshed-Williams, L., Thao, K., Harmer, S.L., and Zilberman, D., The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin, Cell, 2013, vol. 153, pp. 193–205. doi 10.1016/jcell.2013.02.033CrossRef PubMed PubMedCentral
    6.Stroud, H., Do, T., Du, J., Zhong, X., Feng, S., Johnson, L., Patel, D.J., and Jacobsen, S.E., Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis, Nat. Struct. Mol. Biol., 2014, vol. 21, pp. 64–72. doi 10.1038/nsmb.2735CrossRef PubMed PubMedCentral
    7.Cubas, P., Vincent, C., and Coen, E., An epigenetic mutation responsible for natural variation in floral symmetry, Nature, 1999, vol. 401, pp. 157–161.CrossRef PubMed
    8.Jacobsen, S.E. and Meyerowitz, E.M., Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis, Science, 1997, vol. 277, pp. 1100–1103.CrossRef PubMed
    9.Miura, K., Agetsuma, M., Kitano, H., Yoshimura, A., Matsuoka, M., Jacobsen, S.E., and Ashikari, M., A metastable DWARF1 epigenetic mutant affecting plant stature in rice, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, pp. 11218–11223. doi 10.1073/pnas.090194210610.1073/pnas.0901942106CrossRef PubMed PubMedCentral
    10.Manning, K., Tör, M., Poole, M., Hong, Y., Thompson, A.J., King, G.J., Giovannoni, J.J., and Seymour, G.B., A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening, Nat. Genet., 2006, vol. 38, pp. 948–952. doi 10.1038/ng1841CrossRef PubMed
    11.Kakutani, T., Jeddeloh, J.A., and Richards, E.J., Characterization of an Arabidopsis thaliana DNA hypomethylation mutant, Nucleic Acids Res., 1995, vol. 23, pp. 130–137.CrossRef PubMed PubMedCentral
    12.Ronemus, M.J., Galbiati, M., Ticknor, C., Chen, J., and Dellaporta, S.L., Demethylation-induced developmental pleiotropy in Arabidopsis, Science, 1996, vol. 273, pp. 654–657. doi 10.1126/science.273.5275.654CrossRef PubMed
    13.Kankel, M.W., Ramsey, D.E., Stokes, T.L., Flowers, S.K., Haag, J.R., Jeddeloh, J.A., Riddle, N.C., Verbsky, M.L., and Richards, E.J., Arabidopsis MET1 cytosine methyltransferase mutants, Genetics, 2003, vol. 163, pp. 1109–1122.PubMed PubMedCentral
    14.Akimoto, K., Katakami, H., Kim, H.J., Ogawa, E., Sano, C.M., Wada, Y., and Sano, H., Epigenetic inheritance in rice plants, Ann. Bot., 2007, vol. 100, pp. 205–217. doi 10.1093/aob/mcm110CrossRef PubMed PubMedCentral
    15.Teixeira, F.K., Heredia, F., Sarazin, A., Roudier, F., Boccara, M., Ciaudo, C., Cruaud, C., Poulain, J., Berdasco, M., Fraga, M.F., Voinnet, O., Wincker, P., Esteller, M., and Colot, V., A role for RNA in the selective correction of DNA methylation defects, Science, 2009, vol. 323, pp. 1600–1604. doi 10.1126/science.1165313CrossRef PubMed
    16.Fujimoto, R., Sasaki, T., Kudoh, H., Taylor, J.M., Kakutani, T., and Dennis, E.S., Epigenetic variation in the FWA gene within the genus Arabidopsis, Plant J., 2011, vol. 66, pp. 831–843. doi 10.1111/j.1365- 313X.2011.04549xCrossRef PubMed
    17.Kinoshita, T., Miura, A., Choi, Y., Kinoshita, Y., Cao, X., Jacobsen, S.E., Fischer, R.L., and Kakutani, T., One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation, Science, 2004, vol. 303, pp. 521–523. doi 10.1126/science. 1089835CrossRef PubMed
    18.Shiba, H. and Takayama, S., Epigenetic regulation of monoallelic gene expression, Dev. Growth Differ., 2012, vol. 54, pp. 120–128. doi 10.1111/j.1440-169X.2011.01317xCrossRef PubMed
    19.Köhler, C. and Kradolfer, D., Epigenetic mechanisms in the endosperm and their consequences for the evolution of flowering plants, Biochim. Biophys. Acta, 2011, vol. 1809, pp. 438–443. doi 10.1016/jbbagrm.2011.04.004CrossRef PubMed
    20.Xiao, W., Gehring, M., Choi, Y., Margossian, L., Pu, H., Harada, J.J., Goldberg, R.B., Pennell, R.I., and Fischer, R.L., Imprinting of the MEA Polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase, Dev. Cell, 2003, vol. 5, pp. 891–901.CrossRef PubMed
    21.Lauria, M., Rupe, M., Guo, M., Kranz, E., Pirona, R., Viotti, A., and Lund, G., Extensive maternal DNA hypomethylation in the endosperm of Zea mays, Plant Cell, 2004, vol. 16, pp. 510–522.CrossRef PubMed PubMedCentral
    22.Bushell, C., Spielman, M., and Scott, R.J., The basis of natural and artificial postzygotic hybridization barriers in Arabidopsis species, Plant Cell, 2003, vol. 15, pp. 1430–1442.CrossRef PubMed PubMedCentral
    23.Dyachenko, O.V., Zakharchenko, N.S., Shevchuk, T.V., Bohnert, H.J., Cushman, J.S., and Buryanov, Ya.I., Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress, Biochemistry (Moscow), 2006, vol. 71, pp. 461–465.CrossRef
    24.Verhoeven, K.J.F., Jansen, J.J., van Dijk, P.J., and Biere, A., Stress-induced DNA methylation changes and their heritability in asexual dandelions, New Phytol., 2010, vol. 185, pp. 1108–1118. doi 10.1111/j.1469-8137.2009.03121xCrossRef PubMed
    25.Lira-Medeiros, C.F., Parisod, C., Fernandes, R.A., Mata, C.S., Cardoso, M.A., and Ferreira, P.C.G., Epigenetic variation in mangrove plants occurring in contrasting natural environment, PLoS One, 2010, vol. 5: e10326. doi 10.1371/journalpone.0010326CrossRef PubMed PubMedCentral
    26.Richards, C.L., Schrey, A.W., and Pigliucci, M., Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation, Ecol. Lett., 2012, vol. 15, pp. 1016–1025. doi 10.1111/j.1461-0248.2012.01824xCrossRef PubMed
    27.Shen, X., de Jonge, J., Forsberg, S.K.G., Pettersson, M.E., Sheng, Z., Hennig, L., and Carlborg, O., Natural CMT2 variation is associated with genome-wide methylation changes and temperature seasonality, PLoS Genet., 2014, vol. 10, pp. e1004842. doi 10.1371/journalpgen.1004842CrossRef
    28.Dubin, M.J., Zhang, P., Meng, D., Remigereau, M.-S., Osborne, E.J., Casale, F.P., Drewe, P., Kahles, A., Jean, G., Vilhjalmsson, B., Jagoda, J., Irez, S., Voronin, V., Song, Q., Long, Q., et al., DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation, eLife, 2015, vol. 4, pp. e05255. doi 10.7554/eLife.05255CrossRef
    29.West, P.T., Li, Q., Ji, L., Eichten, S.R., Song, J., Vaughn, M.W., Schmitz, R.J., and Springer, N.M., Genomic distribution of H3K9me2 and DNA methylation in a maize genome, PLoS One, 2014, vol. 9, pp. e105267. doi 10.1371/journalpone.0105267CrossRef
    30.Miura, A., Yonebayashi, S., Watanabe, K., Toyama, T., Shimada, H., and Kakutani, T., Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis, Nature, 2001, vol. 411, pp. 212–214.CrossRef PubMed
    31.Cokus, S.J., Feng, S., Zhang, X., Chen, Z., Merriman, B., Haudenschild, C.D., Pradhan, S., Nelson, S.F., Pellegrini, M., and Jacobsen, S.E., Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning, Nature, 2008, vol. 452, pp. 215–219. doi 10.1038/nature06745CrossRef PubMed PubMedCentral
    32.Lister, R., O’Malley, R.C., Tonti-Filippini, J., Gregory, B.D., Berry, C.C., Millar, A.H., and Ecker, J.R., Highly integrated single-base resolution maps of the epigenome in Arabidopsis, Cell, 2008, vol. 133, pp. 523–536. doi 10.1016/jcell.2008.03.029CrossRef PubMed PubMedCentral
    33.Ossowski, S., Schneeberger, K., Lucas-Lledo, J.I., Warthmann, N., Clark, R.M., Shaw, R.G., Weigel, D., and Lynch, M., The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana, Science, 2010, vol. 327, pp. 92–94. doi 10.1126/science. 1180677CrossRef PubMed
    34.Schmitz, R.J., Schultz, M.D., Lewsey, M.G., O’Malley, R.C., Urich, M.A., Libiger, O., Schork, N.J., and Ecker, J.R., Transgenerational epigenetic instability is a source of novel methylation variants, Science, 2011, vol. 334, pp. 369–373. doi 10.1126/science.1212959CrossRef PubMed PubMedCentral
    35.Becker, C., Hagmann, J., Muller, J., Koenig, D., Stegle, O., Borgwardt, K., and Weigel, D., Spontaneous epigenetic variation in the Arabidopsis thaliana methylome, Nature, 2011, vol. 480, pp. 245–249. doi 10.1038/nature10555CrossRef PubMed
    36.Pagnussat, G.C., Yu, H.J., Ngo, Q.A., Rajani, S., Mayalagu, S., Johnson, C.S., Capron, A., Xie, L.F., Ye, D., and Sundaresan, V., Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis, Development, 2005, vol. 132, pp. 603–614. doi 10.1242/dev.01595CrossRef PubMed
    37.Cao, J., Schneeberger, K., Ossowski, S., Günther, T., Bender, S., Fitz, J., Koenig, D., Lanz, C., Stegle, O., Lippert, C., Wang, X., Ott, F., Müller, J., Alonso-Blanco, C., Borgwardt, K., et al., Whole-genome sequencing of multiple Arabidopsis thaliana populations, Nat. Genet., 2011, vol. 43, pp. 956–963. doi 10.1038/ng.911CrossRef PubMed
    38.Schmitz, R.J. and Ecker, J.R., Epigenetic and epigenomic variation in Arabidopsis thaliana, Trends Plant Sci., 2012, vol. 17, pp. 149–154. doi 10.1016/jtplants.2012.01.001CrossRef PubMed PubMedCentral
    39.Liu, J., He, Y., Amasino, R., and Chen, X., siRNAs targeting an intronic transposon in the regulation of natural flowering behavior in Arabidopsis, Genes Dev., 2004, vol. 18, pp. 2873–2878. doi 10.1101/gad.1217304CrossRef PubMed PubMedCentral
    40.Ito, H., Gaubert, H., Bucher, E., Mirouze, M., Vaillant, I., and Paszkowski, J., An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress, Nature, 2011, vol. 472, pp. 115–119. doi 10.1038/nature09861CrossRef PubMed
    41.Bender, J. and Fink, G.R., Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis, Cell, 1995, vol. 83, pp. 725–734.CrossRef PubMed
    42.Schmitz, R.J., Schultz, M.D., Urich, M., Nery, J.R., Pelizzola, M., Libiger, O., Alix, A., McCosh, R.B., Chen, H., Schork, N.J., and Ecker, J.R., Patterns of population epigenomic diversity, Nature, 2013, vol. 495, pp. 193–198. doi 10.1038/nature11968CrossRef PubMed PubMedCentral
    43.Aravin, A.A., Sachidanandam, R., Bourchis, D., Schaefer, C., Pezic, D., Toth, K.F., Bestor, T., and Hannon, G.J., A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice, Mol. Cell, 2008, vol. 31, pp. 785–799. doi 10.1016/jmolcel.2008.09.003CrossRef PubMed PubMedCentral
    44.Cortijo, S., Wardenaar, R., Colomé-Tatché, M., Gilly, A., Etcheverry, M., Labadie, K., Caillieux, E., Hospital, F., Aury, J.-M., Wincker, P., Roudier, F., Jansen, R.C., Colot, V., and Johannes, F., Mapping the epigenetic basis of complex traits, Science, 2014, vol. 343, pp. 1145–1148. doi 10.1126/science.1248127CrossRef PubMed
    45.Eichten, S.R., Schmitz, R.J., and Springer, N.M., Epigenetics: beyond chromatin modifications and complex genetic regulation, Plant Physiol., 2014, vol. 165, pp. 933–947. doi 10.1104/pp.113.234211CrossRef PubMed PubMedCentral
  • 作者单位:V. V. Ashapkin (1)
    L. I. Kutueva (1)
    B. F. Vanyushin (1)

    1. A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
    Plant Sciences
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3407
文摘
DNA methylation is the most stable epigenetic modification with a well studied maintenance mechanism in the mitotically dividing cell generations. The plant DNA is methylated at sites of three types, CG, CHG and CHH. The methylation mechanisms of these sites are different and involve functional activity of various DNA methyltransferases and their accessory factors, that largely define the genome locus specificity of methylation. The genome methylation pattern, DNA methylome, in plants is inheritable not only in the dividing cell generations but also to a considerable extent in generations of the whole plants. A great number of spontaneous epimutations, both natural and experimental ones, are known, that have discernible phenotypic manifestations and are stably inheritable in the plant generations as Mendelian traits. A fundamental distinction of such epimutations from classical mutations is their reversibility. The higher plants epigenome is much more flexible compared with their genome. The single-nucleotide epimutation frequency is hundredfolds higher than the mutation frequency. This variability is probably a main source of the plant phenotypic plasticity, that enables them to adapt to changing environment on the time scales too short for adaptive mutations to occur. A dramatic increase in the plant population epigenetic variability on a practically unchanged genetic context is observed when the essential environmental factors are rapidly changing. Being flexible enough for such adaptive changes, on the other hand, epigenome is stable enough for these adaptive variations to be inheritable between the plant generations. Obviously, the epigenetic variations, that enable plants to adapt to the fast changing environmental factors, serve as material for natural selection and other evolutionary processes on the respective time scales. A still another aspect of evolutionary significance is a capability of epigenetic mechanisms to induce transient bursts of genetic variability by transposon mobilization.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700