The MetJ regulon in gammaproteobacteria determined by comparative genomics methods
详细信息    查看全文
  • 作者:Anne M Augustus (1)
    Leonard D Spicer (1) (2)
  • 刊名:BMC Genomics
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:12
  • 期:1
  • 全文大小:624KB
  • 参考文献:1. Old IG, Phillips SE, Stockley PG, Saint Girons I: Regulation of methionine biosynthesis in the Enterobacteriaceae. / Prog Biophys Mol Biol 1991,56(3):145鈥?85. CrossRef
    2. Greene RC: Biosynthesis of methionine. In / Escherichia coli and Salmonella. Edited by: Neidhardt FC. Washington, DC: American Society for Microbiology Press; 1996:542鈥?60.
    3. Gal J, Szvetnik A, Schnell R, Kalman M: The metD D-methionine transporter locus of Escherichia coli is an ABC transporter gene cluster. / J Bacteriol 2002,184(17):4930鈥?932. CrossRef
    4. Merlin C, Gardiner G, Durand S, Masters M: The Escherichia coli metD locus encodes an ABC transporter which includes Abc (MetN), YaeE (MetI), and YaeC (MetQ). / J Bacteriol 2002,184(19):5513鈥?517. CrossRef
    5. Liu R, Blackwell TW, States DJ: Conformational model for binding site recognition by the E. coli MetJ transcription factor. / Bioinformatics 2001,17(7):622鈥?33. CrossRef
    6. Marincs F, Manfield IW, Stead JA, McDowall KJ, Stockley PG: Transcript analysis reveals an extended regulon and the importance of protein-protein co-operativity for the Escherichia coli methionine repressor. / Biochem J 2006,396(2):227鈥?34. CrossRef
    7. Altenhoff AM, Schneider A, Gonnet GH, Dessimoz C: OMA 2011: orthology inference among 1000 complete genomes. / Nucleic Acids Res 2011, (39 Database):D289鈥?94.
    8. Toft C, Andersson SG: Evolutionary microbial genomics: insights into bacterial host adaptation. / Nat Rev Genet 2010,11(7):465鈥?75. CrossRef
    9. Cai XY, Maxon ME, Redfield B, Glass R, Brot N, Weissbach H: Methionine synthesis in Escherichia coli: effect of the MetR protein on metE and metH expression. / Proc Natl Acad Sci USA 1989,86(12):4407鈥?411. CrossRef
    10. Saint-Girons I, Duchange N, Cohen GN, Zakin MM: Structure and autoregulation of the metJ regulatory gene in Escherichia coli . / J Biol Chem 1984,259(22):14282鈥?4285.
    11. Shoeman R, Coleman T, Redfield B, Greene RC, Smith AA, Saint-Girons I, Brot N, Weissbach H: Regulation of methionine synthesis in Escherichia coli : effect of metJ gene product and S-adenosylmethionine on the in vitro expression of the metB , metL and metJ genes. / Biochem Biophys Res Commun 1985,133(2):731鈥?39. CrossRef
    12. Gophna U, Bapteste E, Doolittle WF, Biran D, Ron EZ: Evolutionary plasticity of methionine biosynthesis. / Gene 2005, 355:48鈥?7. CrossRef
    13. Hacham Y, Gophna U, Amir R: In vivo analysis of various substrates utilized by cystathionine gamma-synthase and O-acetylhomoserine sulfhydrylase in methionine biosynthesis. / Mol Biol Evol 2003,20(9):1513鈥?520. CrossRef
    14. Seiflein TA, Lawrence JG: Two transsulfurylation pathways in Klebsiella pneumoniae. / J Bacteriol 2006,188(16):5762鈥?774. CrossRef
    15. Englesberg E: The irreversibility of methionine synthesis from cysteine in pasteurella pestis. / J Bacteriol 1952,63(5):675鈥?80.
    16. Urbanowski ML, Stauffer LT, Plamann LS, Stauffer GV: A new methionine locus, metR, that encodes a trans-acting protein required for activation of metE and metH in Escherichia coli and Salmonella typhimurium. / J Bacteriol 1987,169(4):1391鈥?397.
    17. Hou S, Saw JH, Lee KS, Freitas TA, Belisle C, Kawarabayasi Y, Donachie SP, Pikina A, Galperin MY, Koonin EV, / et al.: Genome sequence of the deep-sea gamma-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy. / Proc Natl Acad Sci USA 2004,101(52):18036鈥?8041. CrossRef
    18. Fontecave M, Atta M, Mulliez E: S-adenosylmethionine: nothing goes to waste. / Trends Biochem Sci 2004,29(5):243鈥?49. CrossRef
    19. Sekowska A, Kung HF, Danchin A: Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. / J Mol Microbiol Biotechnol 2000,2(2):145鈥?77.
    20. Winkler WC, Nahvi A, Sudarsan N, Barrick JE, Breaker RR: An mRNA structure that controls gene expression by binding S-adenosylmethionine. / Nat Struct Biol 2003,10(9):701鈥?07. CrossRef
    21. McDaniel BA, Grundy FJ, Artsimovitch I, Henkin TM: Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA. / Proc Natl Acad Sci USA 2003,100(6):3083鈥?088. CrossRef
    22. Sekowska A, Denervaud V, Ashida H, Michoud K, Haas D, Yokota A, Danchin A: Bacterial variations on the methionine salvage pathway. / BMC Microbiol 2004, 4:9. CrossRef
    23. Schroeder HR, Barnes CJ, Bohinski RC, Mallette MF: Biological production of 5-methylthioribose. / Can J Microbiol 1973,19(11):1347鈥?354. CrossRef
    24. Heilbronn J, Wilson J, Berger BJ: Tyrosine aminotransferase catalyzes the final step of methionine recycling in Klebsiella pneumoniae. / J Bacteriol 1999,181(6):1739鈥?747.
    25. Sekowska A, Danchin A: The methionine salvage pathway in Bacillus subtilis. / BMC Microbiol 2002, 2:8. CrossRef
    26. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS: Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems. / Nucleic Acids Res 2004,32(11):3340鈥?353. CrossRef
    27. Bulyk ML, McGuire AM, Masuda N, Church GM: A motif co-occurrence approach for genome-wide prediction of transcription-factor-binding sites in Escherichia coli. / Genome Res 2004,14(2):201鈥?08. CrossRef
    28. Nahvi A, Barrick JE, Breaker RR: Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. / Nucleic Acids Res 2004,32(1):143鈥?50. CrossRef
    29. Nou X, Kadner RJ: Coupled changes in translation and transcription during cobalamin-dependent regulation of btuB expression in Escherichia coli. / J Bacteriol 1998,180(24):6719鈥?728.
    30. Janulczyk R, Pallon J, Bjorck L: Identification and characterization of a Streptococcus pyogenes ABC transporter with multiple specificity for metal cations. / Mol Microbiol 1999,34(3):596鈥?06. CrossRef
    31. Neuhierl B, Thanbichler M, Lottspeich F, Bock A: A family of S-methylmethionine-dependent thiol/selenol methyltransferases. Role in selenium tolerance and evolutionary relation. / J Biol Chem 1999,274(9):5407鈥?414. CrossRef
    32. Thanbichler M, Neuhierl B, Bock A: S-methylmethionine metabolism in Escherichia coli. / J Bacteriol 1999,181(2):662鈥?65.
    33. Goulding CW, Postigo D, Matthews RG: Cobalamin-dependent methionine synthase is a modular protein with distinct regions for binding homocysteine, methyltetrahydrofolate, cobalamin, and adenosylmethionine. / Biochemistry 1997,36(26):8082鈥?091. CrossRef
    34. Gonzalez JC, Banerjee RV, Huang S, Sumner JS, Matthews RG: Comparison of cobalamin-independent and cobalamin-dependent methionine synthases from Escherichia coli: two solutions to the same chemical problem. / Biochemistry 1992,31(26):6045鈥?056. CrossRef
    35. Zhang Z, Feige JN, Chang AB, Anderson IJ, Brodianski VM, Vitreschak AG, Gelfand MS, Saier MH Jr: A transporter of Escherichia coli specific for L- and D-methionine is the prototype for a new family within the ABC superfamily. / Arch Microbiol 2003,180(2):88鈥?00. CrossRef
    36. Kadner RJ, Watson WJ: Methionine transport in Escherichia coli: physiological and genetic evidence for two uptake systems. / J Bacteriol 1974,119(2):401鈥?09.
    37. Peekhaus N, Tong S, Reizer J, Saier MH, Murray E, Conway T: Characterization of a novel transporter family that includes multiple Escherichia coli gluconate transporters and their homologues. / FEMS Microbiol Lett 1997,147(2):233鈥?38. CrossRef
    38. Manukhov IV, Mamaeva DV, Rastorguev SM, Faleev NG, Morozova EA, Demidkina TV, Zavilgelsky GB: A gene encoding L-methionine gamma-lyase is present in Enterobacteriaceae family genomes: identification and characterization of Citrobacter freundii L-methionine gamma-lyase. / J Bacteriol 2005,187(11):3889鈥?893. CrossRef
    39. Sato D, Nozaki T: Methionine gamma-lyase: the unique reaction mechanism, physiological roles, and therapeutic applications against infectious diseases and cancers. / IUBMB Life 2009,61(11):1019鈥?028. CrossRef
    40. Wendisch VF, Bott M, Eikmanns BJ: Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. / Curr Opin Microbiol 2006,9(3):268鈥?74. CrossRef
    41. Riscoe MK, Ferro AJ, Fitchen JH: Methionine recycling as a target for antiprotozoal drug development. / Parasitol Today 1989,5(10):330鈥?33. CrossRef
    42. Tower PA, Johnson LL, Ferro AJ, Fitchen JH, Riscoe MK: Synergistic activity of 5-trifluoromethylthioribose and inhibitors of methionine synthesis against Klebsiella pneumoniae. / Antimicrob Agents Chemother 1991,35(8):1557鈥?561.
    43. Fumoto M, Miyazaki S, Sugawara H: Genome Information Broker (GIB): data retrieval and comparative analysis system for completed microbial genomes and more. / Nucleic Acids Research 2002,30(1):66鈥?8. CrossRef
    44. Genome Information Broker for Microbial Genomes [http://gib.genes.nig.ac.jp/]
    45. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL: BLAST+: architecture and applications. / BMC Bioinformatics 2009, 10:421. CrossRef
    46. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. / Mol Biol Evol 2011,28(10):2731鈥?739. CrossRef
    47. The Orthologous Matrix Project [http://www.cbrg.ethz.ch/research/orthologous]
    48. Schneider TD: Information content of individual genetic sequences. / J Theor Biol 1997,189(4):427鈥?41. CrossRef
    49. Belfaiza J, Parsot C, Martel A, de la Tour CB, Margarita D, Cohen GN, Saint-Girons I: Evolution in biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and possess a similar regulatory region. / Proc Natl Acad Sci USA 1986,83(4):867鈥?71. CrossRef
    50. Balbas P, Soberon X, Merino E, Zurita M, Lomeli H, Valle F, Flores N, Bolivar F: Plasmid vector pBR322 and its special-purpose derivatives--a review. / Gene 1986,50(1鈥?):3鈥?0. CrossRef
    51. Casadaban MJ: Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. / J Mol Biol 1976,104(3):541鈥?55. CrossRef
    52. Peters JE, Thate TE, Craig NL: Definition of the Escherichia coli MC4100 genome by use of a DNA array. / J Bacteriol 2003,185(6):2017鈥?021. CrossRef
    53. Miller JH: / Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1972.
  • 作者单位:Anne M Augustus (1)
    Leonard D Spicer (1) (2)

    1. Department of Biochemistry, Duke University, Durham, North Carolina, 27710, USA
    2. Department of Radiology, Duke University, Durham, North Carolina, 27710, USA
文摘
Background Whole-genome sequencing of bacteria has proceeded at an exponential pace but annotation validation has lagged behind. For instance, the MetJ regulon, which controls methionine biosynthesis and transport, has been studied almost exclusively in E. coli and Salmonella, but homologs of MetJ exist in a variety of other species. These include some that are pathogenic (e.g. Yersinia) and some that are important for environmental remediation (e.g. Shewanella) but many of which have not been extensively characterized in the literature. Results We have determined the likely composition of the MetJ regulon in all species which have MetJ homologs using bioinformatics techniques. We show that the core genes known from E. coli are consistently regulated in other species, and we identify previously unknown members of the regulon. These include the cobalamin transporter, btuB; all the genes involved in the methionine salvage pathway; as well as several enzymes and transporters of unknown specificity. Conclusions The MetJ regulon is present and functional in five orders of gammaproteobacteria: Enterobacteriales, Pasteurellales, Vibrionales, Aeromonadales and Alteromonadales. New regulatory activity for MetJ was identified in the genomic data and verified experimentally. This strategy should be applicable for the elucidation of regulatory pathways in other systems by using the extensive sequencing data currently being generated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700