Synthesis and surface modification of uniform MFe2O4 (M?=?Fe, Mn, and Co) nanoparticles with tunable sizes and functionalities
详细信息    查看全文
  • 作者:Lourdes I. Cabrera (14) lourisa_cabrera@yahoo.com
    álvaro Somoza (2)
    José F. Marco (3)
    Carlos J. Serna (1)
    M. Puerto Morales (1)
  • 关键词:Ferrites – Nanoparticles – Thermal decomposition
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:14
  • 期:6
  • 页码:DOI: 10.1007/s11051-
  • 全文大小:720.2 KB
  • 参考文献:1. Bagaria HG, Ada ET et al (2006) Understanding mercapto ligand exchange on the surface of FePt nanoparticles. Langmuir 22(18):7732–7737. doi:
    2. Brabers VAM (1969) Infrared spectra of cubic and tetragonal manganese ferrites. Phys Status Solidi B 33(2):563–572. doi:
    3. Bronstein LM, Atkinson JE et al (2011) Nanoparticles by decomposition of long chain iron carboxylates: from spheres to stars and cubes. Langmuir 27:3044–3055. doi:
    4. Chen C-J, Lai H-Y et al (2009) Preparation of monodisperse iron oxide nanoparticles via the synthesis and decomposition of iron fatty acid complexes. Nanoscale Res Lett 4:1343–1350. doi:
    5. Cheon J-W, Jun Y-W et al. (2007) MRI contrast agents containing water-soluble NPs of manganese oxide or manganese metal oxide. p 44
    6. Compton RG (1987) Electrode kinetics: reactions. Elsevier Publishing Company, New York
    7. Cullity BD, Graham CD (2009) Introduction to magnetic materials. Wiley, Hoboken
    8. Duanmu C, Saha I et al (2006) Dendron-functionalized superparamagnetic NPs with switchable solubility in organic and aqueous media: matrices for homogeneous catalysis and potential MRI contrast agents. Chem Mater 18(25):5973–5981. doi:
    9. Fan Xa, Guan J et al (2010) Low-temperature synthesis, magnetic and microwave electromagnetic properties of subtoichiometric spinel Co ferrite octahedra. Eur J Inorg Chem 2010(3):419–426. doi:
    10. Fauconnier N, Pons JN et al (1997) Thiolation of maghemite nps by dimercaptosuccinic acid. J Colloid Interface Sci 194:427–433
    11. Figuerola A, Corato RD et al (2010) From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res 62(2):1126–1143. doi:
    12. Guardia P, Batle-Brugal B et al (2007) Surfactant effects in magnetite nanoparticles of controlled size. J Magn Magn Mater 316:e756–e759. doi:
    13. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nps for biomedical applications. Biomaterials 26(18):3995–4021. doi:
    14. Gyergyek S, Makovec D et al (2010) Influence of synthesis method on structural and magnetic properties of Co ferrite nps. J Nanopart Res 12:1263–1273. doi:
    15. H?ggstr?m L, Kamali S et al (2008) “M?ssbauer and magnetization studies of iron oxide nanocrystals” Hyperfine Interact 183(1–3): 49–53. doi:10.1007/s10751-008-9750-5
    16. Hajdú A, Illés E et al (2009) Surface charging, polyanionic coating and colloid stability of magnetite nps. Colloids Surf A 347(1–3):104–108. doi:
    17. Han YC, Cha HG et al (2007) Synthesis of highly magnetized iron NPs by a solventless thermal decomposition method. J Phys Chem C 111(17):6. doi:
    18. Horng L, Chern G et al (2004) Magnetic anisotropic properties in Fe3O4 and CoFe2O4 ferrite epitaxy thin films. J Magn Magn Mater 270(3):389–396. doi:
    19. Hu F, MacRenaris KW et al (2009) Ultrasmall, water-soluble magnetite nps with high relaxivity for MRI. J Phys Chem C 113:20855–20860. doi:
    20. Hyeon T, Lee SS et al (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123(51):12798–12801. doi:
    21. Jain N, Wang Y et al (2009) Optimized steric stabilization of aqueous ferrofluids and magnetic nanoparticles. Langmuir 26(6):4465–4472. doi:
    22. Jana NR, Chen Y et al (2004) Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater 16(20):3931–3935. doi:
    23. Joshi HM, Lin YP et al (2009) Effects of shape and size of Co ferrite nanostructures on their MRI contrast and thermal activation. J Phys Chem C 113:11761–17767. doi:10.1021/jp905776g
    24. Jun Y-w, Huh Y-M et al (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via MRI. J Am Chem Soc 127(16):5732–5733. doi:
    25. Kraus A, Jainae K et al (2009) Synthesis of MPTS-modified Co ferrite NPs and their adsorption properties in relation to Au(III). J Colloid Interface Sci 338:359–365. doi:
    26. Kwon SG, Hyeon T (2008) Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc Chem Res 41(12):1696–1709. doi:
    27. Laurent S, Dutz S et al (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8–23
    28. Lee J-H, Jang J-t et al (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotech 6:418–422. doi:
    29. López-Cruz A, Barrera C et al (2009) Water dispersible iron oxide nps coated with covalently linked chitosan. J Mater Chem 19(37):6870–6876. doi:
    30. Maaz K, Mumtaz A et al (2006) Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nps prepared by wet chemical route. J Magn Magn Mater 308:289–295. doi:
    31. Mathur S, Cavelius C et al (2009) Co ferrite NPs from single and multi-component precursor systems. Z Anorg Allg Chem 635(6–7):898–902. doi:
    32. Méthivier C, Beccard B et al (2003) In situ analysis of a mercaptoundecanoic acid layer on Au in liquid phase, by PM-IRAS. Evidence for chemical changes with the solvent. Langmuir 19(21):8807–8812. doi:
    33. Mohammadi Z, Wang X et al (2010) Magnetic polyvinylamine nanoparticles by in situ precipitation reaction. J Polym Sci Part A 48(4):991–996. doi:
    34. Naseri MG, Saion EB et al (2010) Simple synthesis and characterization of Co ferrite NPs by a thermal treatment method. J Nanomat 2010:8. doi:10.1155/2010/907686
    35. Ngo AT, Bonville P et al (2001) Spin canting and size effects in nanoparticles of nonstoichiometric cobalt ferrite. J Appl Phys 89(6):3370–3376. doi:
    36. Nuzzo RG, Dubois LH et al (1990) Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers. J Am Chem Soc 112(2):558–569. doi:
    37. Park J, An K et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3(12):891–895. doi:
    38. Park J, Joo J et al (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 46:4630–4660. doi:
    39. Peng X, Wickham J et al (1998) Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J Am Chem Soc 120(21):5343–5344. doi:
    40. Pino P d, Munoz-Javier A et al (2010) Gene silencing mediated by magnetic lipospheres tagged with small interfering RNA. Nano Lett 10(10):3914–3921. doi:
    41. Roca AG, Morales MP et al (2006) Synthesis of monodispersed magnetite particles from different organometallic precursors. IEEE Trans Magn 42(10):3025–3029. doi:
    42. Roca AG, Marco JF et al (2007) Effect of nature and particle size on properties of uniform magnetite and maghemite NPs. J Phys Chem C 111(50):18577–18584. doi:
    43. Roca AG, Costo R et al (2009) Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 42(22):224002–224012. doi:
    44. Ross CA, Smith HI et al (1999) Fabrication of patterned media for high density magnetic storage. J Vac Sci Technol B 17(6):3168–3176. doi:
    45. Salazar-álvarez G, Qin J et al (2008) Cubic versus spherical magnetic NPs: the role of surface anisotropy. J Am Chem Soc 130:13234–13239. doi:
    46. Salgueiri?o-Maceira V, Liz-Marzán LM et al (2004) Water-based ferrofluids from FexPt1-x NPs synthesized in organic media. Langmuir 20(16):6946–6950. doi:
    47. Sangmanee M, Maensiri S (2009) “Nanostructures and magnetic properties of Co ferrite (CoFe2O4) fabricated by electrospinning” Appl Phys A 97(1): 167–177 doi:10.1007/s00339-009-5256-5
    48. Schabes ME (1991) Micromagnetic theory of non-uniform magnetization processes in magnetic recording particles. J Magn Magn Mater 95(3):249–288. doi:
    49. Sharma SK, Vargas JM et al (2011) “Synthesis and ageing effect in FeO nanoparticles: transformation to core–shell FeO/Fe3O4 and their magnetic characterization.” J Alloys Comp 509(22):6414–6417 doi:10.1016/j.jallcom.2011.03.072
    50. Simeonidis K, Mourdikoudis S et al (2008) “Shape and composition oriented synthesis of Co NPs.” Phys Adv Mater Winter Sch: 8 pp
    51. Socrates G (2004) Infrared and raman characteristic group frequencies: tables and charts, 3rd edn. Wiley, Chichester
    52. Song Q, Zhang J (2004) Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J Am Chem Soc 126(19):6164–6168. doi:
    53. Sun S, Zeng H et al (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) NPs. J Am Chem Soc 126(1):273–279. doi:
    54. Taboada E, Rodríguez E et al (2007) Relaxometric and magnetic characterization of ultrasmall iron oxide NPs with high magnetization. Evaluation as potential T1 MRI contrast agents for molecular imaging. Langmuir 23(8):4583–4588. doi:
    55. Tirosh E, Shemer G et al (2006) Optimizing Co ferrite nanocrystal synthesis using a magneto-optical probe. Chem Mater 18(2):465–470. doi:
    56. Vestal CR, Song Q et al (2004) Effects of interparticle interactions upon the magnetic properties of CoFe2O4 and MnFe2O4 nanocrystals. J Phys Chem B 108(47):18222–18227. doi:
    57. Vlaskou D, Mykhaylyk O et al (2010) Magnetic and acoustically active lipospheres for magnetically targeted nucleic acid delivery. Adv Funct Mater 20(22):3881–3894. doi:
    58. Wang CY, Hong JM et al (2010) Facile method to synthesize oleic acid-capped magnetite nps. Chin Chem Lett 21(2):179–182. doi:
    59. Wiogo HTR, Lim M et al (2010) Stabilization of magnetic iron oxide NPs in biological media by fetal bovine serum (FBS). Langmuir 27(2):843–850. doi:
    60. Xi L, Wang Z et al (2011) The enhanced microwave absorption property of CoFe2O4 nps coated with a Co3Fe7-Co nanoshell by thermal reduction. Nanotech 22(4):045707. doi:
    61. Xie J, Peng S et al (2006) One-pot synthesis of monodisperse iron oxide nps for potential biomedical applications. Pure Appl Chem 78(5):1003–1014. doi:
    62. Xu C, Xu K et al (2004) Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic NPs. J Am Chem Soc 126(32):9938–9939. doi:
    63. Yanez-Vilar S, Sanchez-Andujar M et al (2009) A simple solvothermal synthesis of MFe2O4 (M = Mn, Co and Ni) NP. J Solid State Chem 182(10):2685–2690. doi:
    64. Yin M, O’Brien S (2003) Synthesis of monodisperse nanocrystals of manganese oxides. J Am Chem Soc 125(34):1080–1081. doi:10.1021/ja0362656
  • 作者单位:1. Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, Cantoblanco, Madrid, 28049 Spain2. Faculty of Science Module C-IX, Instituto Madrile?o de Estudios Avanzados-Nanociencia, 3rd floor, Cantoblanco, 28049 Madrid, Spain3. Instituto de Química-Física “ROCASOLANO- CSIC, C/Serrano 119, 28006 Madrid, Spain4. LA.M.M. c/o dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto F.no (Fi), Italy
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nanotechnology
    Inorganic Chemistry
    Characterization and Evaluation Materials
    Physical Chemistry
    Applied Optics, Optoelectronics and Optical Devices
  • 出版者:Springer Netherlands
  • ISSN:1572-896X
文摘
Cubic monodisperse MFe2O4 ferrite nanoparticles (M = Fe, Co, and Mn) with tunable sizes between 7 and 20 nm and a narrow size distribution have been achieved in a one step synthesis by thermal decomposition of Fe(III), Co (II), and Mn(II) oleates. These nanoparticles have been functionalized with dimercaptosuccinic acid (DMSA), 11-mercaptoundecanoic acid (MUA), and bis(carboxymethyl)(2-maleimidylethyl)ammonium 4-toluenesulfonate (MATS) to grant them aqueous stability and the possibility for further functionalization with different biomolecules. Their structural, magnetic, and colloidal properties have also been studied to determine their chemical and physical properties and the degree of stability under physiological conditions that will determine their future use in biomedical applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700