Mechano-biological Coupling of Cellular Responses to Microgravity
详细信息    查看全文
  • 作者:Mian Long ; Yuren Wang ; Huiqiong Zheng ; Peng Shang…
  • 关键词:Microgravity ; Mechanobiology ; Mechanotransduction ; Cells
  • 刊名:Microgravity Science and Technology
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:27
  • 期:6
  • 页码:505-514
  • 全文大小:669 KB
  • 参考文献:Alenghat, F.J., Ingber, D.E.: Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci. STKE. 2002, 6 (2002)
    Ayyaswamy, P. S., Mukundakrishnan, K.: Optimal conditions for simulating microgravity employing NASA designed rotatingwall vessels. Acta Astronautica 60, 397 (2007)CrossRef
    Barjaktarovi茅, 啪., Sch眉tz, W., Madlung, J., Fladerer, C., Nordheim, N., Hampp, R.: Changes in the effective gravitational field strength affect the state of phosphorylation of stress related proteins in callus cultures of Arabidopsis thaliana. J. Exp. Bot. 60, 779 (2009)CrossRef
    Becker, A.L., Souza, G.R.: Using space-based investigation to inform cancer research on earth. Nat. Rev. Cancer. 13, 315 (2013)CrossRef
    Beysens, D., Carotenuto, L., van Loon, J.J.W.A., Zell, M.: Laboratory science with space data. Springer, Berlin (2011)CrossRef
    Blaber, E., Sato, K., Almeida, E.A.: Stem cell health and tissue regeneration in microgravity. Stem Cells Dev. Suppl. 23, 1 (2014)
    Blancaflor, E.B., Masson, P.H.: Plant gravitropism, unraveling the ups and downs of a complex process. Plant Physiol. 133, 1677 (2003)CrossRef
    Boonsirichai, K., Guan, C., Chen, R., Masson, P.H.: Root gravitropism: an experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants. Annu. Rev. Plant. Biol. 53, 421 (2002)CrossRef
    Daley, G.Q., Scadden, D.T.: Prospects for stem cell-based therapy. Cell 132, 544 (2008)CrossRef
    Di, S.M., Qian, A.R., Qu, L.N., Zhang, W., Wang, Z., Ding, C., Li, Y.H., Ren, H.G., Shang, P.: Graviresponses of osteocytes under altered gravity. Adv. Space Res. 48, 1161 (2011)CrossRef
    Di, S.M, Tian, Z.C., Qian, A.R., Li, J.B, Wu, J.W., Wang, Z., Zhang, D.Y, Yin, D.C., Brandi, M.L., Shang, P.: Large gradient high magnetic field affects FLG29.1 cells differentiation to form osteoclast-like cells. Int. J. Radiat. Biol. 88, 806 (2012)CrossRef
    Discher, D.E., Mooney, D.J., Zandstra, P.W.: Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673 (2009)CrossRef
    Guilak, F., Butler, D.L., Goldstein, S.A., Baaijens, F.P.T.: Biomechanics and mechanobiology in functional tissue engineering. J. Biomech. 47, 1933 (2014)CrossRef
    Han, S.F., Zhao, Y.N., Xiao, Z.F., Han, J., Chen, B., Chen, L., Dai, J.W.: The three-dimensional collagen scaffold improves the stemness of rat bone marrow mesenchymal stem cells. J. Genet. Genomics. 39, 633 (2012)CrossRef
    Herranz, R., Anken, R., Boonstra, J., Braun, M., Christianen, P.C.M, de Geest, M., Hauslage, J., Hilbig, R., Hill, R.J.A., Lebert, M., Medina, F.J., Vagt, N., Ullrich, O., van Loon, J.J.W.A., Hemmersbach R.: Ground-based facilities for simulation of microgravity: Organism-specific recommendations for their use, and recommended terminology. Astrobiology 13, 1 (2013)CrossRef
    Hu, L.F., Qian, A.R., Wang, Y., Di, S.M., Shang, P.: Inhibitory effect of simulated microgravity on differentiating preosteoblasts. Adv. Space Res. 51, 107 (2013a)CrossRef
    Hu, L.F., Li, J.B., Qian, A.R, Wang, F., Shang, P.: Mineralization initiation of MC3T3-E1 preosteoblast is suppressed under simulated microgravity condition. Cell Biol. Int. 39, 4 (2015)CrossRef
    Hu, L.W., Mei, Z.L., Zang, A.P., Chen, H.Y., Dou, X.Y., Cai, W.M.: Microarray analyses and comparisons of upper or lower flanks of rice shoot base preceding gravitropic bending. PLoS ONE 8, e74646 (2013b)CrossRef
    Hu, W.R., Zhao, J.F., Long, M., Zhang, X.W., Liu, Q.S., Hou, M.Y., Kang, Q., Wang, Y.R., Xu, S.H., Kong, W.J., Zhang, H., Wang, S.F., Sun, Y.Q., Hang, H.Y., Huang, Y.P., Cai, W.M., Zhao, Y., Dai, J.W., Zheng, H.Q., Duan, E.K., Wang, J.F.: Space program SJ-10 of microgravity research. Microgravity Sci. Technol. 26, 159 (2014)CrossRef
    Jin, J., Chen, H.Y., Cai, W.M.: Transcriptome analysis of Oryza sativa Calli under microgravity. Microgravity Sci. Technol. (2015). doi:10.鈥?007/鈥媠12217-015-9432-2
    Kang, Q., Long, M., Zhang, Y.Z., Duan, L., Zhao, J.F., Xu, S.H., Wang, S.F.: Advances of microgravity sciences. Chin. J. Space Sci. 34, 733 (2014)
    Kaufmann, I., Feuerecker, M., Salam, A., Schelling, G., Thiel, M., Chouk茅r, A.: Adenosine A2 A receptor modulates the oxidative stress response of primed polymorphonuclear leukocytes after parabolic flight. Hum. Immunol. 72, 547 (2011)CrossRef
    Kaur, I., Simons, E.R., Castro, V.A., Ott, C.M., Pierson, D.L.: Changes in neutrophil functions in astronauts. Brain Behav. Immun. 18, 443 (2004)CrossRef
    Knight, T.: On the direction of the radical and germen during the vegetation of seeds. Philos. Trans. R. Soc 99, 108 (1806)
    Koehler, K.R., Mikosz, A.M., Molosh, A.I., Patel, D., Hashino, E.: Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature 500, 217 (2013)CrossRef
    Kojima, Y., Sasaki, S., Kubota, Y., Ikeuchi, T., Hayashi, Y., Kohri, K.: Effects of simulated microgravity on mammalian fertilization and preimplantation embryonic development in vitro. Fertil. Steril 74, 1142 (2000)CrossRef
    Lei, X.H., Ning, L.N., Cao, Y.J., Liu, S., Zhang, S.B., Qiu, Z.F., Hu, H.M., Zhang, H.S., Liu, S., Duan, E.K.: NASA-approved rotary bioreactor enhances proliferation of human epidermal stem cells and supports formation of 3D epidermis-like structure. PLoS One 6, e26603 (2011)CrossRef
    Lei, X.H., Deng, Z.L., Zhang, H.S., Zhao, H.S., Zhou, J.X., Liu, S., Chen, Q., Ning, L.N., Cao, Y.J, Wang, X.Y., Zhang, X.D., Duan, E.K.: Rotary suspension culture enhances mesendoderm differentiation of embryonic stem cells through modulation of Wnt/beta-catenin pathway. Stem Cell Rev. 10, 526 (2014)CrossRef
    Leitz, G., Kang, B.H., Schoenwaelder, M.E.A., Staehelin, L.A.: Statolith sedimentation kinetics and force transduction to the cortical endoplasmic reticulum in gravity-sensing Arabidopsis columella cells. Plant Cell 21, 843 (2009)CrossRef
    Li, H., Chen, J., Zhang, Y., Sun, S.J., Tao, Z.L., Long, M.: Effects of oriented substrates on cell morphology, the cell cycle, and the cytoskeleton in Ros 17/2.8 cells. Sci. China Ser. C 53, 1085 (2010)CrossRef
    Li, H.S., Lu, J.Y., Sun, Q., Chen, Y., He, D.C., Liu, M.: Small RNA deep sequencing and the effects of microRNA408 on root gravitropic bending in Arabidopsis. Microgravity Sci. Technol. (2015). doi:10.鈥?007/鈥媠12217-015-9444-y
    Li, J.B, Wang, L., He, G., Luo, M.Z., Qian, A.R., Shang, P.: Fibronectin is involved in gravity-sensing of osteoblast like cell. J. Jpn. Soc. Microgravity Appl. 28, S36 (2011)
    Lu, Y., Ding, C., Wang, J., Shang, P.: An illuminated growth system for the study of Arabidopsis thaliana during diamagnetic levitation by a superconducting magnet. Adv. Space Res. 55, 1 (2015)CrossRef
    Luo, H.Y., Wang, C.Z, Feng, M.F, Zhao, Y.: Microgravity inhibits resting T cell immunity in an exposure time-dependent manner. Int. J. Med. Sci. 11, 87 (2014)CrossRef
    Ma, B.H., Cao, Y.J., Zheng, W.B., Lu, J.R., Kuang, H.B., Lei, X.H., L眉, Y.H., Zhang, T., Duan, E.K.: Real-time micrography of mouse preimplantation embryos in an orbit module on SJ-8 satellite. Microgravity Sci. Tech. 20, 127鈥?36 (2008)CrossRef
    Mazars, C., Bri猫re, C., Grat, S., Pichereaux, C., Rossignol, M., Pereda-Loth, V., Eche, B., Boucheron-Dubuisson, E., Disquet, I.L., Medina, F.J., Graziana, A., Carnero-Diaz, E.: Microgravity induces changes in microsome-associated proteins of Arabidopsis seedlings grown on board the international space station. PLoS One 9, e91814 (2014)CrossRef
    Morita, M.T.: Directional gravity sensing in gravitropism. Annu. Rev. Plant Biol. 61, 705 (2010)CrossRef
    Nabavia, N., Khandanic, A., Camirandd, A., Harrison, R.E.: Effects of microgravity on osteoclast bone resorption and osteoblast cytoskeletal organization and adhesion. Bone 49, 5 (2011)
    Ning, L.N., Lei, X.H., Cao, Y.J., Zhang, Y.F., Cao, Z.H., Chen, Q., Duan, E.K.: Effect of short-term hypergravity treatment on mouse 2-cell embryo development. Microgravity Sci. Tech. (2015). doi:10.鈥?007/鈥媠12217-015-9446-9
    Paul, A.L., Zupanska, A.K., Schultz, E., Rerl, R.J.: Organ-specific remodeling of the Arabidopsis transcriptome in response to space flight. BMC Plant Biol. 13, 112 (2013)CrossRef
    Pecaut, M.J., Simske, S.J., Fleshner, M.: Spaceflight induces changes in splenocyte subpopulations: effectiveness of ground-based models. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 279, R2072 (2000)
    Pietsch, J., Ma, X., Wehland, M., Aleshcheva, G., Schwarzw盲lder, A., Segerer, J., Birlem, M., Horn, A., Bauer, J., Infanger, M., Grimm, D.: Spheriod formation of human thyroid cancer cells in an automated culturing system during the Shenzhou-8 space mission. Biomaterials 34, 7694 (2013)CrossRef
    Plotkin, L.I., Bellido, T.: Beyond gap junctions: Connexin43 and bone cell signaling. Bone 52, 157 (2013)CrossRef
    Qi, B., Zheng, H.Q.: Modulation of root skewing responses by KNAT1 in Arabidopsis thaliana. Plant J. 76, 380 (2013)CrossRef
    Qi, J.Y., Wu, B.B., Feng, S.L., L眉, S.Q., Zhang, X., Huang, Z.W., Hu, Y.C., Li, C.Y., Bai, S.N., Long, M., Jiao, Y.L.: Mechanical regulation of organ asymmetry in leaves (Under review)
    Qian, A.R., Di, S.M., Gao, X., Zhang, W., Tian, Z.C., Li, J.B., Hu, L.F., Yang, P.F., Yin, D.C.: Shang, P.: cDNA microarray reveals the alterations of cytoskeleton-related genes in osteoblast under high magneto-gravitational environment. Acta Biochim. Biophys. Sin. 41, 561 (2009a)CrossRef
    Qian, A.R., Hu, L.F., Gao, X., Zhang, W., Di, S.M., Tian, Z.C., Yang, P.F., Yin, D.C., Weng, Y.Y., Shang, P.: Large gradient high magnetic field affects the association of MACF1 with actin and microtubule cytoskeleton. Bioelectromagnetics 30, 545 (2009b)CrossRef
    Qian, A.R., Yang, P.F., Hu, L.F., Zhang, W., Di, S.M., Wang, Z., Han, J., Gao, X., Shang, P.: High magnetic gradient environment causes alterations of cytoskeleton and cytoskeleton-associated genes in human osteoblasts cultured in vitro. Adv. Space Res. 46, 687 (2010)CrossRef
    Qian, A.R., Wang, L., Gao, X., Zhang, W., Hu, L.F., Han, J., Li, J.B., Di, S.M., Shang, P.: Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes. IEEE Trans. Biomed. Eng. 59, 68 (2012)CrossRef
    Qian, A.R., Yin, D.C., Yang, P.F., L眉, Y., Tian, Z.C., Shang, P.: Application of diamagnetic levitation technology in biological sciences research. Applied Superconductivity. IEEE Trans. Biomed. Eng. 23, 1 (2013a)
    Qian, A.R., Gao, X., Zhang, W., Li, J.B., Wang, Y., Di, S.M., Hu, L.F., Shang, P.: Large gradient high magnetic fields affect osteoblast ultrastructure and function by disrupting collagen I or fibronectin/ 伪 尾1 integrin. PLoS One 8, e51036 (2013b)CrossRef
    Rodriguez, J. P., Astudillo, P., Rios, S., Pino, A.M.: Involvement of adipogenic potential of human bone marrow mesenchymal stem cells (MSCs) in osteoporosis. Curr. Stem Cell Res. 3, 3 (2008)
    Sato, E.M., Hijazi, H., Bennett, M.J., Vissenberg, K., Swarup, R.: New insights into root gravitropic signaling. J. Exp. Bot. 66, 2155 (2015)CrossRef
    Shang, P., Zhang, J., Qian, A.R., Li, J.B., Meng, R., Di, S.M., Hu, L.F., Gu, Z.Z.: Bone cells under microgravity. J. Mech. Med. Biol. 13, 1340006 (2013)CrossRef
    Singh, P., Carraher, C., Schwarzbauer, J.E.: Assembly of fibronectin extracellular matrix. Annu. Rev. Cell Dev. Biol. 26, 397 (2010)CrossRef
    Silverberg, J.L., Noar, R.D., Packer, M.S., Harrison, M. J., Henley, C.L., Cohen, I.: Gerbode, S.J.: 3D imaging and mechanical modeling of helical bucking in Medicago truncatula plant roots. PNAS 109, 16794 (2012)CrossRef
    Sun, Y.L., Chen, Z.H., Chen, X.H., Yin, C., Li, D.J., Ma, X.L., Zhao, F., Zhang, G., Shang, P., Qian, A.R.: Diamagnetic levitation promotes osteoclast differentiation from RAW264.7 cells. IEEE Trans. Biomed. Eng. 62, 3 (2015)CrossRef
    Suozzi, K.C., Wu, X., Fuchs, E.: Spectraplakins: master orchestrators of cytoskeletal dynamics. J. Cell Biol. 197, 465 (2012)CrossRef
    Tan, C., Wang, H., Zhang, Y., Qi, B., Xu, G., Zheng, H.Q.: A proteomic approach to analyzing responses of Arabidopsis thaliana root cells to different gravitational conditions using an agravitropic mutant, pin2 and its wild type. Proteome Sci. 9, 72 (2011)CrossRef
    Toyota, M., Ikeda, N., Sawai-Toyota, S., Kato, T., Gilroy, S., Tasaka, M., Morita, M.T.: Amyloplast displacement is necessary for gravisensing in Arabidopsis shoots as revealed by a centrifuge microscope. Plant J. 76, 648 (2013a)CrossRef
    Toyota, M., Gilrory, S.: Gravitropism and mechanical signaling in plants. Amer. J. Bot. 100, 111 (2013b)CrossRef
    Ulbrich, C., Wehland, M., Pietsch, J., Aleshcheva, G., Wise, P., van Loon, J., Magnusson, N., Infanger, M., Grosse, J., Eilles, C., Sundaresan, A., Grimm, D.: The impact of simulated and real microgravity on bone cells and mesenchymal stem cells. Biomed. Res. Int 2014 (2014)
    Vallier, L., Alexander, M., Pedersen, R.A.: Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J. Cell Sci. 118, 4495 (2005)CrossRef
    van Loon, J.J.W.A.: Mechanomics and physicomics in gravisensing. Microgravity Sci. Technol. 21, 159 (2009)CrossRef
    Vanneste, S., Friml, J.: Auxin: A trigger for change in plant development. Cell 136, 1005 (2009)CrossRef
    Wang, Y.X., Shyy, J.Y.J., Chien, S.: Fluorescence proteins, live-cell imaging, and mechanobiology: Seeing is believing. Annu. Rev. Biomed. Eng. 10, 1 (2008)CrossRef MATH
    Wang, C.Z., Luo, H.Y., Zhu, L.N., Yang, F., Chu, Z.L., Tian, H.L., Feng, M.F., Zhao, Y., Shang, P.: Microgravity inhibition of lipopolysaccharide-induced tumor necrosis factor- 伪 expression in macrophage cells. Inflamm. Res. 63, 91 (2014a)CrossRef
    Wang, J.W., L眉, D.Y., Mao, D.B., Long, M.: Mechanomics: An emerging field between biology and biomechanics. Protein Cell 5, 518 (2014b)CrossRef
    Wang, X.Y., Liu, S., Zhao, Q., Li, N., Zhang, H.S., Zhang, X.D., Lei, X.H., Zhao, H.S., Deng, Z.L., Qiao, J.Q., Cao, Y.J., Ning, L.N., Liu, S., Duan, E.K.: Three-dimensional hydrogel scaffolds facilitate in vitro self-renewal of human skin-derived precursors. Acta Biomater. 10, 3177 (2014c)CrossRef
    Wang, C.Z., Li, N., L眉, S.Q., Sun, S.J., Chen, Q., Gao, Y.X., Long, M.: Effects of simulated microgravity on mechanical rolling and adhesion of HL60 cells under shear flow. Microgravity Sci. Technol. (Accepted)
    Wei, J.S., Han, J., Zhao, Y.N., Cui, Y., Wang, B., Xiao, Z.F., Chen, B., Dai, J.W.: The importance of three-dimensional scaffold structure on stemness maintenance of mouse embryonic stem cells. Biomaterials 35, 7724 (2014)CrossRef
    Weise, S.E., Kuznetsov, Q.A., Hasenstein, K.H., Kiss, J.Z.: Curvature in Arabidopsis inflorescence stems is limited to the region of amyloplast displacement. Plant Cell Physiol. 41, 702 (2000)CrossRef
    Yang, X., Sun, L.W., Wu, X.T., Wang, X.N., Fan, Y.B.: Effect of simulated microgravity on osteocytes responding to fluid shear stress. Acta Astronautica 84, 237 (2013)CrossRef
    Yin, D.C.: Protein crystallization in a magnetic field. Prog. Cryst. Growth. Ch 61, 1 (2015)CrossRef
    Zhang, J., Ding, C., Shang, P.: Alterations of mineral elements in osteoblast during differentiation under hypo, moderate and high static magnetic fields. Biol. Trace Elem. Res 162, 153 (2014)
    Zhang, J., Li, J.B., Xu, H.Y., Yang, P.F., Xie, L., Qian, A.R., Zhao, Y., Shang, P.: Responds of bone cells to microgravity: ground-based research. Microgravity Sci. Technol. (2015a). doi:10.鈥?007/鈥媠12217-015-9443-z
    Zhang, Y., Wang, L., Xie, J., Zheng, H.Q.: Differential protein expression profiling of Arabidopsis thaliana callus under microgravity on board the Chinese SZ-8 spacecraft. Planta 241, 475 (2015b)CrossRef
    Zhang, Y., Zheng, H.Q.: Changes in plastid and mitochondria protein expression in Arabidopsis thaliana callus on board Chinese spacecraft SZ-8. Microgravity Sci. Technol (2015c). doi:10.鈥?007/鈥媠12217-015-9431-3
    Zheng, Z., Wang, F., Han, Y.: Glass transitions in quasi-two-dimensional suspensions of colloidal ellipsoids. Phys. Rev. Lett. 107, 065702 (2011)CrossRef
    Zheng, Z., Ni, R., Wang, F., Dijkstra, M., Wang, Y., Han, Y.: Structural signatures of dynamic heterogeneities in monolayers of colloidal ellipsoids. Nat. Commun. 5, 3829 (2014)
    Zheng, Z.Y., Zou, J.J., Li, H.H., Xue, S., Wang, Y.R., Le, J.: Microrheological insights into the dynamics of amyloplasts in root gravity-sensing cells. Mol. Plant (2015). doi:10.鈥?016/鈥媕.鈥媘olp.鈥?014.鈥?2.鈥?21
  • 作者单位:Mian Long (1) (2)
    Yuren Wang (1)
    Huiqiong Zheng (3)
    Peng Shang (4)
    Enkui Duan (5)
    Dongyuan L眉 (1) (2)

    1. Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences (CAS), No. 15 North 4th Ring Road, Beijing, 100190, China
    2. Center for Biomechanics and Bioengineering and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences (CAS), No. 15 North 4th Ring Road, Beijing, 100190, China
    3. Laboratory of Photosynthesis and Environmental Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, CAS, Shanghai, China
    4. School of Life Sciences, Northwestern Polytechnical University, Xi鈥檃n, Xi鈥檃n, China
    5. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, CAS, Beijing, China
  • 刊物类别:Engineering
  • 刊物主题:Extraterrestrial Physics and Space Sciences
    Aerospace Technology and Astronautics
    Classical Continuum Physics
  • 出版者:Springer Netherlands
  • ISSN:1875-0494
文摘
Cellular response to microgravity is a basic issue in space biological sciences as well as space physiology and medicine. It is crucial to elucidate the mechano-biological coupling mechanisms of various biological organisms, since, from the principle of adaptability, all species evolved on the earth must possess the structure and function that adapts their living environment. As a basic element of an organism, a cell usually undergoes mechanical and chemical remodeling to sense, transmit, transduce, and respond to the alteration of gravitational signals. In the past decades, new computational platforms and experimental methods/techniques/devices are developed to mimic the biological effects of microgravity environment from the viewpoint of biomechanical approaches. Mechanobiology of plant gravisensing in the responses of statolith movements along the gravity vector and the relevant signal transduction and molecular regulatory mechanisms are investigated at gene, transcription, and protein levels. Mechanotransduction of bone or immune cell responses and stem cell development and tissue histogenesis are elucidated under microgravity. In this review, several important issues are briefly discussed. Future issues on gravisensing and mechanotransducing mechanisms are also proposed for ground-based studies as well as space missions. Keywords Microgravity Mechanobiology Mechanotransduction Cells

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700