Fabrication of Ni-Co binary oxide/reduced graphene oxide composite with high capacitance and cyclicity as efficient electrode for supercapacitors
详细信息    查看全文
  • 作者:Yang Bai ; Miaomiao Liu ; Jing Sun ; Lian Gao
  • 关键词:Supercapacitors ; Ni ; Co binary oxide ; Reduced graphene oxide ; High capacitance
  • 刊名:Ionics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:22
  • 期:4
  • 页码:535-544
  • 全文大小:909 KB
  • 参考文献:1.Yu L, Zhang GQ, Yuan CZ, Lou XW (2013) Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem Commun 49(2):137–139CrossRef
    2.Chen H, Hu LF, Chen M, Yan Y, Wu LM (2014) Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv Funct Mater 24(7):934–942
    3.Chang J, Jin M, Yao F, Kim TH, Le VT, Yue H, Gunes F, Li B, Ghosh A, Xie S, Lee YH (2013) Asymmetric supercapacitors based on graphene/MnO2Nanospheres and graphene/MoO3Nanosheets with high energy density. Adv Funct Mater 23(40):5074–5083CrossRef
    4.Lu ZY, Yang Q, Zhu W, Chang Z, Liu JF, Sun XM, Evans DG, Duan X (2012) Hierarchical Co3O4@Ni-Co-O supercapacitor electrodes with ultrahigh specific capacitance per area. Nano Res 5(5):369–378CrossRef
    5.Wang GX, Cai J, Xu HF, Lu L, Zhao H (2014) Enhanced capacitance of a NiO electrode prepared in the magnetic field. J Appl Electrochem 44(3):391–398CrossRef
    6.Xu H, Zhuang JX, Li JL, Zhang JL, Lu HL (2014) Liquid precipitation synthesis of Co3O4 for highperformance electrochemical capacitors. Ionics 20(4):489–494CrossRef
    7.Wang GP, Liu LX, Zhang L, Zhang JJ (2013) Nickel, cobalt, and manganese oxide composite as an electrode material for electrochemical supercapacitors. Ionics 19(4):689–695CrossRef
    8.Yang F, Yao J, Liu F, He H, Zhou M, Xiao P, Zhang Y (2013) Ni–Co oxides nanowire arrays grown on ordered TiO2 nanotubes with high performance in supercapacitors. J Mater Chem A 1(3):594CrossRef
    9.Kuang M, Wen ZQ, Guo XL, Zhang SM, Zhang YX (2014) Engineering firecracker-like betamanganese dioxides@spinel nickel cobaltates nanostructures for high-performance supercapacitors. J Power Sources 270:426–433CrossRef
    10.Kang JL, Hirata A, Qiu HJ, Chen LY, Ge XB, Fujita T, Chen MW (2014) Self-grown Oxy-Hydroxide@ nanoporous metal electrode for high-performance supercapacitors. Adv Mater 26(2):269–272CrossRef
    11.Wang H, Holt CMB, Li Z, Tan X, Amirkhiz BS, Xu Z, Olsen BC, Stephenson T, Mitlin D (2012) Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res 5(9):605–617CrossRef
    12.Kuang M, Zhang YX, Li TT, Li KF, Zhang SM, Li G, Zhang W (2015) Tunable synthesis of hierarchical NiCo2O4 nanosheets-decorated Cu/CuOx nanowires architectures for asymmetric electrochemical capacitors. J Power Sources 283:270–278CrossRef
    13.Wang B, Liu Q, Qian Z, Zhang X, Wang J, Li Z, Yan H, Gao Z, Zhao F, Liu L (2014) Two steps in situ structure fabrication of Ni–Al layered double hydroxide on Ni foam and its electrochemical performance for supercapacitors. J Power Sources 246:747–753CrossRef
    14.Chen J-C, Hsu C-T, Hu C-C (2014) Superior capacitive performances of binary nickel–cobalt hydroxide nanonetwork prepared by cathodic deposition. J Power Sources 253:205–213CrossRef
    15.Kim M, Hwang Y, Kim J (2013) Graphene/MnO2-based composites reduced via different chemical agents for supercapacitors. J Power Sources 239:225–233CrossRef
    16.Zhu X, Dai H, Hu J, Ding L, Jiang L (2012) Reduced graphene oxide–nickel oxide composite as high performance electrode materials for supercapacitors. J Power Sources 203:243–249CrossRef
    17.Sheng Chen JZ, Xiaodong W, Qiaofeng H, Xin W (2010) Graphene oxide MnO2 nanocomposites for supercapacitors.pdf. ACS Nano 4:2822–2830
    18.Huang ML, Gu CD, Ge X, Wang XL, Tu JP (2014) NiO nanoflakes grown on porous graphene frameworks as advanced electrochemical pseudocapacitor materials. J Power Sources 259:98–105CrossRef
    19.Xia X, Lei W, Hao Q, Wang W, Wang X (2013) One-step synthesis of CoMoO4/graphene composites with enhanced electrochemical properties for supercapacitors. Electrochim Acta 99:253–261CrossRef
    20. Hummers WS Jr, Offeman RE (1958) Preparation of Graphitic Oxide. J Am Chem Soc 80:1339CrossRef
    21.Yu Z, McInnis M, Calderon J, Seal S, Zhai L, Thomas J (2015) Functionalized graphene aerogel composites for high-performance asymmetric supercapacitors. Nano Energy 11:611–620CrossRef
    22.Xia XH, Tu JP, Mai YJ, Chen R, Wang XL, Gu CD, Zhao XB (2011) Graphene sheet/porous NiO hybrid film for supercapacitor applications. Chem Eur J 17(39):10898–10905CrossRef
    23.Yan J, Fan ZJ, Sun W, Ning GQ, Wei T, Zhang Q, Zhang RF, Zhi LJ, Wei F (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22(12):2632–2641CrossRef
    24.Gao H, Wang G, Yang M, Tan L, Yu J (2012) Novel tunable hierarchical Ni-Co hydroxide and oxide assembled from two-wheeled units. Nanotechnology 23(1):015607CrossRef
    25.Song YC, Wang J, Li ZS, Guan DH, Mann T, Liu Q, Zhang ML, Liu LH (2012) Self-assembled hierarchical porous layered double hydroxides by solvothermal method and their application for capacitors. Microporous Mesoporous Mater 148(1):159–165CrossRef
    26.Yuan CZ, Zhang XG, Su LH, Gao B, Shen LF (2009) Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J Mater Chem 19(32):5772–5777CrossRef
    27.Zhu CZ, Guo SJ, Fang YX, Dong SJ (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4):2429–2437CrossRef
    28.Zhao B, Song J, Liu P, Xu W, Fang T, Jiao Z, Zhang H, Jiang Y (2011) Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors. J Mater Chem 21(46):18792–18798CrossRef
    29.Li B, Cao H, Yin J, Wu YA, Warner JH (2012) Synthesis and separation of dyes via Ni@reduced graphene oxide nanostructures. J Mater Chem 22(5):1876CrossRef
    30.Gao Z, Wang J, Li Z, Yang W, Wang B, Hou M, He Y, Liu Q, Mann T, Yang P, Zhang M, Liu L (2011) Graphene nanosheet/Ni2+/Al3+layered double-hydroxide composite as a novel electrode for a supercapacitor. Chem Mater 23(15):3509–3516CrossRef
    31.Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7):4324–4330CrossRef
    32.Mao L, Zhang K, Chan HSO, Wu JS (2012) Nanostructured MnO2/graphene composites for supercapacitor electrodes: the effect of morphology, crystallinity and composition. J Mater Chem 22(5):1845–1851CrossRef
    33.Kuboon S, Hu YH (2011) Study of NiO-CoO and Co3O4-Ni3O4 solid solutions in multiphase Ni-Co-O systems. Ind Eng Chem Res 50(4):2015–2020CrossRef
    34.Su CY, Xu YP, Zhang WJ, Zhao JW, Tang XH, Tsai CH, Li LJ (2009) Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chem Mater 21(23):5674–5680CrossRef
    35.Casiraghi C, Ferrari AC, Robertson J (2005) Raman spectroscopy of hydrogenated amorphous carbons. Phys Rev B 72(8):085401CrossRef
    36.Sobon G, Sotor J, Jagiello J, Kozinski R, Zdrojek M, Holdynski M, Paletko P, Boguslawski J, Lipinska L, Abramski KM (2012) Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Opt Express 20(17):19463–19473CrossRef
    37.Kim S, Ku SH, Lim SY, Kim JH, Park CB (2011) Graphene-biomineral hybrid materials. Adv Mater 23(17):2009–2014CrossRef
    38.Ji ZY, Shen XP, Zhu GX, Zhou H, Yuan AH (2012) Reduced graphene oxide/nickel nanocomposites: facile synthesis, magnetic and catalytic properties. J Mater Chem 22(8):3471–3477CrossRef
    39.Zhong-Shuai Wu WR, Da-Wei W, Feng L, Bilu L, Hui-Ming C (2010) High-energy MnO2 NanowireGraphene and graphene asymmetric electrochemical capacitors.pdf. ACS Nano 4:5835–5842CrossRef
    40.Wang L, Liu XH, Wang X, Yang XJ, Lu LD (2010) Preparation and electrochemical properties of mesoporous Co3O4 crater-like microspheres as supercapacitor electrode materials. Curr Appl Phys 10(6):1422–1426CrossRef
    41.Zhou HS, Li DL, Hibino M, Honma I (2005) A self-ordered, crystalline-glass, mesoporous nanocomposite for use as a lithium-based storage device with both high power and high energy densities. Angew Chem Int Ed 44(5):797–802CrossRef
    42.Lu ZY, Zhu W, Lei XD, Williams GR, O'Hare D, Chang Z, Sun XM, Duan X (2012) High pseudocapacitive cobalt carbonate hydroxide films derived from CoAl layered double hydroxides. Nanoscale 4(12):3640–3643CrossRef
    43.Sun X, Wang GK, Hwang JY, Lian J (2011) Porous nickel oxide nano-sheets for high performance pseudocapacitance materials. J Mater Chem 21(41):16581–16588CrossRef
    44.Wang Y-M, Zhang X, Guo C-Y, Zhao Y-Q, Xu C-L, Li H-L (2013) Controllable synthesis of 3D NiχCo1–χ oxides with different morphologies for high-capacity supercapacitors. J Mater Chem A 1(42):13290CrossRef
    45.Kong L, Deng L, Lang J, Ji X, Luo Y, Kang L (2012) Enhanced electrochemical capacitive properties of nickel-cobalt oxide nano-flakes materials. Chin J Chem 30(3):570–576CrossRef
    46.Wang X, Liu WS, Lu X, Lee PS (2012) Dodecyl sulfate-induced fast faradic process in nickel cobalt oxide–reduced graphite oxide composite material and its application for asymmetric supercapacitor device. J Mater Chem 22(43):23114CrossRef
    47.Hu CC, Chen WC, Chang KH (2004) How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. J Electrochem Soc 151(2):A281–A290CrossRef
    48.Zhang YX, Kuang M, Hao XD, Liu Y, Huang M, Guo XL, Yan J, Han GQ, Li J (2014) Rational design of hierarchically porous birnessite-type manganese dioxides nanosheets on different onedimensional titania-based nanowires for high performance supercapacitors. J Power Sources 270:675–683CrossRef
    49.Zhong JH, Wang AL, Li GR, Wang JW, Ou YN, Tong YX (2012) Co3O4/Ni(OH)(2) composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. J Mater Chem 22(12):5656–5665CrossRef
    50.Chen J, Bradhurst DH, Dou SX, Liu HK (1999) Nickel hydroxide as an active material for the positive electrode in rechargeable alkaline batteries. J Electrochem Soc 146(10):3606–3612CrossRef
    51.Li Y, Hasin P, Wu Y (2010) NixCo3–xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv Mater 22(17):1926–1929CrossRef
    52.Wang L, Dong ZH, Wang ZG, Zhang FX, Jin J (2013) Layered α-Co(OH)2Nanocones as electrode materials for pseudocapacitors: understanding the effect of interlayer space on electrochemical activity. Adv Funct Mater 23(21):2758–2764CrossRef
    53.Wang X, Sumboja A, Lin M, Yan J, Lee PS (2012) Enhancing electrochemical reaction sites in nickelcobalt layered double hydroxides on zinc tin oxide nanowires: a hybrid material for an asymmetric supercapacitor device. Nanoscale 4(22):7266–7272CrossRef
    54.Tang C, Tang Z, Gong H (2012) Hierarchically porous Ni-Co oxide for high reversibility asymmetric full-cell supercapacitors. J Electrochem Soc 159(5):A651–A656CrossRef
  • 作者单位:Yang Bai (1)
    Miaomiao Liu (1)
    Jing Sun (1)
    Lian Gao (1)

    1. The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Electrochemistry
    Materials Science
    Physical Chemistry
    Condensed Matter
    Renewable Energy Sources
    Electrical Power Generation and Transmission
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1862-0760
文摘
Nickel-cobalt binary oxide/reduced graphene oxide (G-NCO) composite with high capacitance is synthesized via a mild method for electrochemical capacitors. G-NCO takes advantages of reduced graphene oxide (RGO) and nickel-cobalt binary oxide. As an appropriate matrix, RGO is beneficial to form homogeneous structure and improve the electron transport ability. The binary oxide owns more active sites than those of nickel oxide and cobalt oxide to promote the redox reaction. Attributed to the well crystallinity, homogeneous structure, increased active sites, and improved charge transfer property, the G-NCO composite exhibits highly enhanced electrochemical performance compared with G-NiO and G-Co3O4 composites. The specific capacitance of the G-NCO composite is about 1750 F g−1 at 1 A g−1 together with capacitance retention of 79 % (900/1138 F g−1) over 10,000 cycles at 4 A g−1. To research its practical application, an asymmetric supercapacitor with G-NCO as positive electrode and activated carbon as negative electrode was fabricated. The asymmetric device exhibits a prominent energy density of 37.7 Wh kg−1 at a power density of 800 W kg−1. The modified G-NCO composite shows great potential for high-capacity energy storage.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700