Structural features and electrochemical properties of nanostructured ZnCo2O4 synthesized by an oxalate precursor method
详细信息    查看全文
  • 作者:Wenpei Kang ; Fan Feng ; Miaomiao Zhang ; Shaojie Liu…
  • 关键词:Zinc cobaltite ZnCo2O4 ; Oxalate precursor ; Porous material ; Anode material ; Lithium ion battery
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2013
  • 出版时间:November 2013
  • 年:2013
  • 卷:15
  • 期:11
  • 全文大小:541KB
  • 参考文献:1. Alcántara R, Jaraba M, Lavela P, Tirado JL (2002) NiCo2O4 spinel: first report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem Mater 14:2847-848 CrossRef
    2. Aragón MJ, León B, Serrano T, Vicente CP, Tirado JL (2011) Synergistic effects of transition metal substitution in conversion electrodes for lithium-ion batteries. J Mater Chem 21:10102-0107 CrossRef
    3. Du N, Xu YF, Zhang H, Yu JX, Zhai CX, Yang DR (2011) Porous ZnCo2O4 nanowires synthesis via sacrificial templates: high-performance anode materials of Li-ion batteries. Inorg Chem 50:3320-324 CrossRef
    4. Kang WP, Shen Q (2013) The shape-controlled synthesis and novel lithium storage mechanism of as-prepared CuC 2 O 4 · / xH 2 O nanostructures. J Power Sources 238:203-09 CrossRef
    5. Kang WP, Zhao CH, Shen Q (2012) Lithium storage capability of nanocrystalline CuO improved by its water-based interactions with sodium alginate. Int J Electrochem Sci 7:8194-204
    6. Li WY, Xu LN, Chen J (2005) Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv Funct Mater 15:851-57 CrossRef
    7. Li JF, Xiong SL, Li Xiaowei, Qian YT (2012a) Spinel Mn1.5Co1.5O4 core-shell microspheres as Li-ion anode materials with long cycle life and high capacity. J Mater Chem 22:23254-3259 CrossRef
    8. Li MX, Yin YX, Li CJ, Zhang FZ, Wan LJ, Xu SL, Evans DG (2012b) Well-dispersed bi-component-active CoO/CoFe2O4 nanocomposites with tunable performances as anode materials for lithium-ion batteries. Chem Commun 48:410-12 CrossRef
    9. López MC, Tirado JL, Vicente CP (2013) Structural and comparative electrochemical study of M(II) oxalates, M?=?Mn, Fe, Co, Ni, Cu, Zn. J Power Sources 227:65-1 CrossRef
    10. Lou XW, Deng D, Lee JY, Feng J, Archer LA (2008) Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv Mater 20:258-62 CrossRef
    11. Luo W, Hu XL, Sun YM, Huang YH (2012) Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J Mater Chem 22:8916-921 CrossRef
    12. Peng CX, Chen BD, Qin Y, Yang SH, Li CZ, Zuo YH, Liu SY, Yang JH (2012) Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 6:1074-081 CrossRef
    13. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496-99 CrossRef
    14. Qiu YC, Yang SH, Deng H, Jin LM, Li WS (2010) A novel nanostructured spinel ZnCo2O4 electrode material: morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries. J Mater Chem 20:4439-444 CrossRef
    15. Sharma Y, Sharma N, Subba Rao GV, Chowdari BVR (2007) Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv Funct Mater 17:2855-861 CrossRef
    16. Vu A, Qian YQ, Stein A (2012) Porous electrode materials for lithium-ion batteries—how to prepare them and what makes them special. Adv Energy Mater 2:1056-085 CrossRef
    17. Wang YG, Li HQ, He P, Hosono E, Zhou HS (2010) Nano active materials for lithium-ion batteries. Nanoscale 2:1294-305 CrossRef
    18. Wu HB, Chen JS, Hng HH, Lou XW (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4:2526-542 CrossRef
    19. Ye J, Liu W, Cai J, Chen S, Zhao X, Zhou H, Qi L (2011) Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J Am Chem Soc 133:933-40 CrossRef
    20. Zhang XJ, Zhang DE, Ni XM, Song JM, Zheng HG (2008) Synthesis and electrochemical properties of different sizes of the CuO particles. J Nanopart Res 10:839-44 CrossRef
  • 作者单位:Wenpei Kang (1)
    Fan Feng (1)
    Miaomiao Zhang (1)
    Shaojie Liu (1)
    Qiang Shen (1)

    1. Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
  • ISSN:1572-896X
文摘
As a Li-ion battery anode, the active substance with a porous nanostructure can be endowed with a high electrochemical performance because of its porosity and remarkable surface area. In this paper, the thermal decomposition of zinc–cobalt binary oxalate precursors, precipitated from a solvothermal medium of ethanol and water (75/25, v/v) at 100?°C, has been performed to synthesize phase-pure ZnCo2O4 spinels, thoroughly giving porous and rod-like configurations with an average length of a few micrometers. Interestingly, each of the as-obtained porous microrods has been well characterized to consist of ~35.2-nm single-crystalline nanoparticles with polydisperse interspaces. More interestingly, porous ZnCo2O4 microrods can deliver an initial specific discharge capacity of 1,293.7?mAh?g? with the coulombic efficiency of 76.8?% at 0.2?A?g?, reaching a value of 937.3?mAh?g? over 100 discharge–charge cycles. Even at a high current density of 2.0?A?g?, the porous ZnCo2O4 nanostructures can still possess a reversible discharge capacity of ~925.0?mAh?g?, further assigned to the synergistic effect of Zn- and Co-based oxide components. Anyway, the facile oxalate precursor method can realize the controlling synthesis of porous and rod-like ZnCo2O4 nanostructures with a high electrochemical performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700