ShatterProof: operational detection and quantification of chromothripsis
详细信息    查看全文
  • 作者:Shaylan K Govind (10)
    Amin Zia (10)
    Pablo H Hennings-Yeomans (10)
    John D Watson (10)
    Michael Fraser (13)
    Catalina Anghel (10)
    Alexander W Wyatt (11)
    Theodorus van der Kwast (15)
    Colin C Collins (11)
    John D McPherson (10) (14)
    Robert G Bristow (12) (13) (14)
    Paul C Boutros (10) (14) (16)

    10. Ontario Institute for Cancer Research
    ; M5G 0A3 ; Toronto ; Canada
    13. Radiation Medicine Program
    ; Ontario Cancer Institute ; Toronto ; Ontario ; Canada
    11. Vancouver Prostate Centre and Department of Urologic Sciences
    ; University of British Columbia ; Vancouver ; BC ; Canada
    15. Department of Pathology
    ; University Health Network ; Toronto ; Ontario ; Canada
    14. Department of Medical Biophysics
    ; University of Toronto ; Toronto ; Ontario ; Canada
    12. STTARR Innovation Program
    ; Toronto ; Ontario ; Canada
    16. Department of Pharmocology and Toxicology
    ; University of Toronto ; Toronto ; Ontario ; Canada
  • 关键词:Chromothripsis ; Complex genomic rearrangement ; Next generation sequencing ; High throughput sequencing ; Perl ; Bioinformatics
  • 刊名:BMC Bioinformatics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:782 KB
  • 参考文献:1. Stephens, PJ, Greenman, CD, Fu, B, Yang, F, Bignell, GR, Mudie, LJ, Pleasance, ED, Lau, KW, Beare, D, Stebbings, LA, McLaren, S, Lin, M, McBride, DJ, Varela, I, Nik-Zainal, S, Leroy, C, Jia, M, Menzies, A, Butler, AP, Teague, JW, Quail, MA, Burton, J, Swerdlow, H, Carter, NP, Morsberger, LA, Iacobuzio-Donahue, C, Follows, GA, Green, AR, Flanagan, AM, Stratton, MR (2010) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144: pp. 27-40 CrossRef
    2. Crasta, K, Ganem, NJ, Dagher, R, Lantermann, AB, Ivanova, EV, Pan, Y, Nezi, L, Protopopov, A, Chowdhury, D, Pellman, D (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482: pp. 53-58 CrossRef
    3. Rausch, T, Jones, DT, Zapatka, M, Stutz, AM, Zichner, T, Weischenfeldt, J, Jager, N, Remke, M, Shih, D, Northcott, PA, Pfaff, E, Tica, J, Wang, Q, Massimi, L, Witt, H, Bender, S, Pleier, S, Cin, H, Hawkins, C, Beck, C, von Deimling, A, Hans, V, Brors, B, Eils, R, Scheurlen, W, Blake, J, Benes, V, Kulozik, AE, Witt, O, Martin, D (2012) Genome sequencing of pediatric medulloblastoma links catastrophic, DNA rearrangements with TP53 mutations. Cell 148: pp. 59-71 CrossRef
    4. Kloosterman, W, Hoogstraat, M, Paling, O, Tavakoli-Yaraki, M, Renkens, I, Vermaat, J, van Roosmalen, M, van Lieshout, S, Nijman, I, Roessingh, W, van 鈥檛 Slot, R, van de Belt, J, Guryev, V, Koudijs, M, Voest, E, Cuppen, E (2011) Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer. Genome Biol 12: pp. R103 CrossRef
    5. Zhang, F, Carvalho, CM, Lupski, JR (2009) Complex human chromosomal and genomic rearrangements. Trends Genet 25: pp. 298-307 CrossRef
    6. Zhang, CZ, Mitchel, LL, Pellman, D (2013) Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Genes Dev 27: pp. 2513-2530 CrossRef
    7. Liu, P, Erez, A, Nagamani, SCS, Dhar, SU, KoBodziejska, KE, Dharmadhikari, AV, Cooper, ML, Wiszniewska, J, Zhang, F, Withers, MA, Bacino, CA, Campos-Acevedo, LD, Delgado, MR, Freedenberg, D, Garnica, A, Grebe, TA, Hernandez-Almaguer, D, Immken, L, Lalani, SR, McLean, SD, Northrup, H, Scaglia, F, Strathearn, L, Trapane, P, Kang, SL, Patel, A, Cheung, SW, Hastings, PJ, Stankiewicz, P, Lupski, JR (2011) Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146: pp. 889-903 CrossRef
    8. Kim, TM, Xi, R, Luquette, LJ, Park, RW, Johnson, MD, Park, PJ (2013) Functional genomic analysis of chromosomal aberrations in a compendium of 8000 cancer genomes. Genome Res 23: pp. 217-227 CrossRef
    9. Northcott, PA, Shih, DJH, Peacock, J, Garzia, L, Morrissy, AS, Zichner, T, Stutz, AM, Korshunov, A, Reimand, J, Schumacher, SE, Beroukhim, R, Ellison, DW, Marshall, CR, Lionel, AC, Mack, S, Dubuc, A, Yao, Y, Ramaswamy, V, Luu, B, Rolider, A, Cavalli, FMG, Wang, X, Remke, M, Wu, X, Chiu, RYB, Chu, A, Chuah, E, Corbett, RD, Hoad, GR, Jackman, SD (2012) Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 488: pp. 49-56 CrossRef
    10. Baca, SC, Prandi, D, Lawrence, MS, Mosquera, JM, Romanel, A, Drier, Y, Park, K, Kitabayashi, N, MacDonald, TY, Ghandi, M, Allen, EV, Kryukov, GV, Sboner, A, Theurillat, JP, Soong, TD, Nickerson, E, Auclair, D, Tewari, A, Beltran, H, Onofrio, RC, Boysen, G, Guiducci, C, Barbieri, CE, Cibulskis, K, Sivachenko, A, Carter, SL, Saksena, G, Voet, D, Ramos, AH, Winckler, W (2013) Punctated evolution of prostate cancer genomes. Cell 153: pp. 666-677 CrossRef
    11. Molenaar, JJ, Koster, J, Zwijnenburg, DA, van Sluis, P, Valentijn, LJ, van der Ploeg, I, Hamdi, M, van Nes, J, Westerman, BA, van Arkel, J, Ebus, ME, Haneveld, F, Lakeman, A, Schild, L, Molenaar, P, Stroeken, P, van Noesel, MM, Ora, I, Santo, EE, Caron, HN, Westerhout, EM, Versteeg, R (2012) Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483: pp. 589-593 CrossRef
    12. Holland, AJ, Cleveland, DW (2012) Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nature Med 18: pp. 1630-1638 CrossRef
    13. Kloosterman, WP, Tavakoli-Yaraki, M, Roosmalen, MJ, Binsbergen, E, Renkens, I, Duran, K, Ballarati, L, Vergult, S, Giardino, D, Hansson, K, Ruivenkamp, CAL, Jager, M, Haeringen, A, Ippel, EF, Haaf, T, Passarge, E, Hochstenbach, R, Menten, B, Larizza, L, Guryev, V, Poot, M, Cuppen, E (2012) Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Cell Rep 1: pp. 648-655 CrossRef
    14. YAML ain鈥檛 Markup Language (YAML) Version 1.2 [http://www.yaml.org/spec/1.2/spec.html]
    15. VCF (Variant Call Format) version 4.0 [http://www.1000genomes.org/node/101]
    16. The analytic hierarchy process [http://msdn.microsoft.com/en-us/magazine/cc163785.aspx]
    17. Chen, K, Wallis, JW, McLellan, MD, Larson, DE, Kalicki, JM, Pohl, CS, McGrath, SD, Wendl, MC, Zhang, Q, Locke, DP, Shi, X, Fulton, RS, Ley, TJ, Wilson, RK, Ding, L, Mardis, ER (2009) BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods 6: pp. 677-681 CrossRef
    18. Boeva, V, Zinovyev, A, Bleakley, K, Vert, JP, Janoueix-Lerosey, I, Delattre, O, Barillot, E (2011) Control-free calling of copy number alterations in deep-sequencing data using GC-content normalization. Bioinformatics 27: pp. 268-269 CrossRef
    19. Wu, C, Wyatt, A, McPherson, A, Lin, D, McConeghy, B, Mo, F, Shukin, R, Lapuk, A, Jones, S, Zhao, Y, Marra, M, Gleave, M, Volik, S, Wang, Y, Sahinalp, S, Collins, C (2012) Ploy-Gene Fusion Transcripts and Chromothripsis in Prostate Cancer. Genes Chromosomes Cancer 51: pp. 1144-1153 CrossRef
  • 刊物主题:Bioinformatics; Microarrays; Computational Biology/Bioinformatics; Computer Appl. in Life Sciences; Combinatorial Libraries; Algorithms;
  • 出版者:BioMed Central
  • ISSN:1471-2105
文摘
Background Chromothripsis, a newly discovered type of complex genomic rearrangement, has been implicated in the evolution of several types of cancers. To date, it has been described in bone cancer, SHH-medulloblastoma and acute myeloid leukemia, amongst others, however there are still no formal or automated methods for detecting or annotating it in high throughput sequencing data. As such, findings of chromothripsis are difficult to compare and many cases likely escape detection altogether. Results We introduce ShatterProof, a software tool for detecting and quantifying chromothriptic events. ShatterProof takes structural variation calls (translocations, copy-number variations, short insertions and loss of heterozygosity) produced by any algorithm and using an operational definition of chromothripsis performs robust statistical tests to accurately predict the presence and location of chromothriptic events. Validation of our tool was conducted using clinical data sets including matched normal, prostate cancer samples in addition to the colorectal cancer and SCLC data sets used in the original description of chromothripsis. Conclusions ShatterProof is computationally efficient, having low memory requirements and near linear computation time. This allows it to become a standard component of sequencing analysis pipelines, enabling researchers to routinely and accurately assess samples for chromothripsis. Source code and documentation can be found at http://search.cpan.org/~sgovind/Shatterproof.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700