Effects of resource pulses on nutrient availability, ecosystem productivity, and temporal variability following a stochastic disturbance in eutrophic glacial lakes
详细信息    查看全文
  • 作者:Michael J. Weber ; Michael L. Brown
  • 关键词:Eutrophication ; Hypoxia ; Winterkill ; Nutrients ; Productivity ; Food webs
  • 刊名:Hydrobiologia
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:771
  • 期:1
  • 页码:165-177
  • 全文大小:635 KB
  • 参考文献:Anderson, W. B. & G. A. Polis, 2004. Allochthonous nutrient food inputs: consequences for temporal stability. In Polis, G. A., M. E. Power & G. R. Huxel (eds), Food webs at the landscape level. The University of Chicago Press, Chicago, IL: 82–95.
    Anderson, W. B., D. A. Wait & P. Stapp, 2008. Resources from another place and time: responses to pulses in a spatially subsidized system. Ecology 89: 660–670.CrossRef PubMed
    Bajer, P. G. & P. W. Sorensen, 2010. Recruitment and abundance of an invasive fish, the common carp, is driven by its propensity to invade and reproduce in basins that experience winter-time hypoxia in interconnected lakes. Biological Invasions 12: 1101–1112.CrossRef
    Bister, T. J., D. W. Willis, M. L. Brown, S. M. Jordan, R. M. Neuman, M. C. Quist & C. S. Guy, 2000. Proposed standard weight (Ws) equations and standard length categories for 18 warmwater nongame and riverine fish species. North American Journal of Fish Management 20: 570–574.CrossRef
    Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634–639.CrossRef
    Cooper, C. M. & S. Testa, 2001. A quick method of determining rock surface area for quantification of the invertebrate community. Hydrobiologia 452: 203–208.CrossRef
    Day, R. H., S. M. Murphy, J. A. Wiens, G. D. Hayward, E. J. Harner & L. N. Smith, 1997. Effects of the Exxon Valdez oil spill on habitat use by birds in Prince William Sound, Alaska. Ecological Applications 7: 593–613.CrossRef
    Durbin, A. G., S. W. Nixon & C. A. Oviatt, 1979. Effects of the spawning migration of the alewife, Alosa pheudoharengus, on freshwater ecosystems. Ecology 60: 8–17.CrossRef
    Eberhardt, L. L. & J. M. Thomas, 1991. Designing environmental field studies. Ecological Monographs 61: 53–73.CrossRef
    Gende, S. M., R. T. Edwards, M. F. Willson & M. S. Wipfli, 2002. Pacific salmon in aquatic and terrestrial ecosystems. BioScience 52: 917–928.CrossRef
    Greenbank, J., 1945. Limnological conditions in ice-covered lakes, especially as related to winter-kill of fish. Ecological Monographs 15: 343–392.CrossRef
    Hall, D. J. & T. J. Ehlinger, 1989. Perturbation, planktivory, and pelagic community structure: the consequence of winterkill in a small lake. Canadian Journal of Fisheries and Aquatic Sciences 46: 2203–2209.CrossRef
    Huxel, G. R., K. McCann & G. A. Polis, 2002. Effects of partitioning allochthonous and autochthonous resources on food web stability. Ecological Research 17: 419–432.CrossRef
    Isermann, D. A., S. R. Chipps & M. L. Brown, 2004. Seasonal Daphnia biomass in winterkill and nonwinterkill glacial lakes of South Dakota. North American Journal of Fisheries Management 24: 287–292.CrossRef
    Kitchell, J. F., J. F. Koonce & P. S. Tennis, 1975. Phosphorus flux through fishes. Verhandlungen des Internationalen Verein Limnologie 19: 2478–2484.
    Krebs, C. J., 1999. Ecological methodology, 2nd ed. Addison-Wesley Educational Publishers Inc, California.
    Moore, J. W. & D. E. Schindler, 2004. Nutrient export from freshwater ecosystems by anadromous sockeye salmon (Oncorhynchus nerka). Canadian Journal of Fisheries and Aquatic Sciences 61: 1582–1589.CrossRef
    Naiman, R. J., R. E. Bilby, D. E. Schindler & J. M. Helfield, 2002. Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems 5: 399–417.CrossRef
    Nakashima, B. S. & W. C. Leggett, 1980. The role of fishes in the regulation of phosphorus availability in lakes. Canadian Journal of Fisheries and Aquatic Science 37: 1540–1549.CrossRef
    Nędzarek, A., A. Tórz, S. Rakusa-Suszczewski & M. Bonisławska, 2015. Nitrogen and phosphorus release during fish decomposition and implications for the ecosystem of maritime Antarctica. Polar Biology 38: 733–740.CrossRef
    Nowlin, W. H., M. J. Gonzalez, M. J. Vanni, H. H. Stevens, M. W. Fields & J. J. Valentei, 2007. Allochthonous subsidy of periodical cicadas affects the dynamics and stability of pond communities. Ecology 88: 2174–2186.CrossRef PubMed
    Nowlin, W. H., M. J. Vanni & L. H. Yang, 2008. Comparing resource pulses in aquatic and terrestrial ecosystems. Ecology 89: 647–659.CrossRef PubMed
    Ostfeld, R. S. & F. Keesing, 2000. Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends in Ecology and Evolution 15: 232–237.CrossRef PubMed
    Pace, M. L., J. J. Cole, S. R. Carpenter, J. F. Kitchell, J. R. Hodgson, M. C. Van de Bogart, D. L. Bade, E. S. Kritzberg & D. Bastviken, 2004. Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 427: 240–243.CrossRef PubMed
    Polis, G. A. & S. D. Hurd, 1996. Linking marine and terrestrial food webs: allocthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. American Naturalist 147: 396–423.CrossRef
    Polis, G. A., M. E. Power & G. Huxel, 2004. Food webs at the landscape level. University of Chicago Press, Illinois.
    Rudstam, L. G., R. C. Lathrop & S. C. Carpenter, 1993. The rise and fall of a dominant planktivore: direct and indirect effects on zooplankton. Ecology 74: 303–319.CrossRef
    Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes: natural mechanisms compensate for deficiencies of nitrogen and carbon in eutrophied lakes. Science 195: 260–262.CrossRef PubMed
    Schoenebeck, C. W., M. L. Brown, S. R. Chipps & D. R. German, 2012. Nutrient and algal responses to winterkilled fish-derived nutrient subsidies in eutrophic lakes. Lake and Reservoir Management 28: 189–199.CrossRef
    Smith, C. R., H. Kukert, R. A. Wheatcroft, P. A. Jumars & J. W. Deming, 1989. Vent fauna on whale remains. Nature 341: 27–28.CrossRef
    Stapp, P. & G. A. Polis, 2003. Marine resources subsidize insular rodent populations in the Gulf of California, Mexico. Oecologia 134: 496–504.CrossRef PubMed
    Stevenson, R. J. & L. L. Bahls, (1999). Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish” 2nd edition. EPA 841-B-99-002. Washington, DC: U.S. Environmental Protection Agency.
    Thompson, S. K., 2002. Sampling, 2nd ed. Wiley, New York.
    U.S. EPA (Environmental Protection Agency), (1994). Methods for chemical analysis of water and wastes. EPA 600/4-79-020. Cincinnati, OH: U.S. Environmental Protection Agency, National Environmental Research Center.
    Vadeboncoeur, Y., E. Jeppesen, M. J. Vander Zanden, H. H. Schierup, K. Christoffersen & D. M. Lodge, 2003. From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography 48: 1408–1418.CrossRef
    Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1999. Effects of resource limitation on a detrital-based ecosystem. Ecological Monographs 69: 409–442.CrossRef
    Walters, A. W., R. T. Barnes & D. M. Post, 2009. Anadromous alewives (Alosa pseudoharengus) contribute marine-derived nutrients to coastal stream food webs. Canadian Journal of Fisheries and Aquatic Sciences 66: 439–448.CrossRef
    Weber, M. J. & M. L. Brown, 2013. Comparisons of continuous, pulsed, and disrupted nutrient subsidies on nutrient availability, ecosystem productivity, stability, and energy flow. Ecosphere 4: 27.CrossRef
    Weber, M. J. & M. L. Brown, 2009. Effects of common carp on aquatic ecosystems 80 years after Carp as a dominant: ecological insights for fisheries management. Reviews in Fisheries Science 17: 524–537.CrossRef
    Weber, M. J., M. L. Brown & D. W. Willis, 2010. Spatial variability of common carp populations in relation to lake morphology and physicochemical parameters in the upper Midwest United States. Ecology of Freshwater Fish 19: 555–565.CrossRef
    West, D. C., A. W. Walters, S. Gephard & D. M. Post, 2010. Nutrient loading by anadromous alewife (Alosa pseudoharengus): contemporary patterns and predictions for restoration efforts. Canadian Journal of Fisheries and Aquatic Sciences 67: 1211–1220.CrossRef
    Wetzel, R. G., 2001. Limnology: lake and reservoir ecosystems, 3rd ed. Elsevier Science, San Diego, CA.
    Wiens, J. A. & K. R. Parker, 1995. Analyzing the effects of accidental environmental impacts: approaches and assumptions. Ecological Applications 5: 1069–1083.CrossRef
    Wiens, J. A., R. D. Day, S. M. Murphy & K. R. Parker, 2004. Changing habitat and habitat use by birds after the Exxon Valdex oil spill, 1989–2001. Ecological Applications 14: 1806–1825.CrossRef
    Yang, L. H., J. L. Bastow, K. O. Spence & A. N. Wright, 2008. What can we learn from resource pulses? Ecology 89: 621–634.CrossRef PubMed
    Yang, L. H., K. F. Edwards, J. E. Byrnes, J. L. Bastow, A. N. Wright & K. O. Spence, 2010. A meta-analysis of resource pulse-consumer interactions. Ecological Monographs 80: 125–151.CrossRef
  • 作者单位:Michael J. Weber (1) (2)
    Michael L. Brown (1)

    1. Department of Natural Resource Management, South Dakota State University, Brookings, SD, 57007, USA
    2. Department of Natural Resource Ecology and Management, Iowa State University, 339 Science Hall II, Ames, IA, 50011, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Hydrobiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5117
文摘
Hypoxia in shallow lakes represents a stochastic disturbance that may elicit a resource pulse through fish decomposition, altering nutrient availability and temporal variability of ecosystem productivity. We measured nutrient availability, primary and secondary production, and temporal variability from April through September in no, moderate, and high carrion lakes following winter 2007–2008 and used a repeated-measures ANOVA and impact trend-by-time analyses to evaluate how increasing levels of fish carrion influence recipient ecosystems. Lakes with carrion had higher nutrient concentrations, pH, turbidity, chlorophyll-a, and zooplankton and benthic invertebrates and less periphyton compared to no carrion lakes. Phytoplankton was positively related to carrion biomass but the association diminished through time suggesting recovery from the initial nutrient pulse. In contrast, total Kjeldahl nitrogen, turbidity, and macroinvertebrates were positively related to carrion biomass and the slope increased throughout the summer suggesting an increasing pulse effect through time. Initially, zooplankton density was negatively related to carrion biomass but then became positively related to carrion biomass. Regression slope between zooplankton and carrion biomass peaked in June before decreasing in late summer, suggesting recovery from the pulse. Combined, our results suggest that nutrients released during fish decomposition following stochastic disturbances represent an important pulse in eutrophic lakes that further enriches productivity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700