Comparative analysis of the ability of Clostridium clariflavum strains and Clostridium thermocellum to utilize hemicellulose and unpretreated plant material
详细信息    查看全文
  • 作者:Javier A Izquierdo (1) (2) (3)
    Sivakumar Pattathil (2) (4)
    Anna Guseva (1) (2)
    Michael G Hahn (2) (4)
    Lee R Lynd (1) (2)

    1. Thayer School of Engineering
    ; Dartmouth College ; Hanover ; NH ; USA
    2. BioEnergy Science Center Oak Ridge National Laboratory Oak Ridge
    ; Oak Ridge ; TN ; USA
    3. Department of Biology
    ; Hofstra University ; Hempstead ; NY ; USA
    4. Complex Carbohydrate Research Center
    ; University of Georgia ; Athens ; GA ; USA
  • 关键词:CBP ; Clostridium thermocellum ; Clostridium clariflavum ; Hemicellulose ; Switchgrass
  • 刊名:Biotechnology for Biofuels
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:7
  • 期:1
  • 全文大小:1,855 KB
  • 参考文献:1. Lynd, L, Zyl, W, McBride, J, Laser, M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16: pp. 577-583 CrossRef
    2. Sizova, MV, Izquierdo, JA, Panikov, NS, Lynd, LR (2011) Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost. Appl Environ Microbiol 77: pp. 2282-2291 CrossRef
    3. Madden, R (1983) Isolation and characterization of Clostridium stercorarium sp. nov., cellulolytic thermophile. Int J Syst Bacteriol 33: pp. 837 CrossRef
    4. Lynd, L, Weimer, P, Van Zyl, W, Pretorius, I (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66: pp. 506 CrossRef
    5. Shiratori, H, Sasaya, K, Ohiwa, H, Ikeno, H, Ayame, S, Kataoka, N, Miya, A, Beppu, T, Ueda, K (2009) Clostridium clariflavum sp. nov. and Clostridium caenicola sp. nov., moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge. Int J Syst Evol Microbiol 59: pp. 1764-1770 CrossRef
    6. Shiratori, H, Ikeno, H, Ayame, S (2006) Isolation and characterization of a new Clostridium sp. that performs effective cellulosic waste digestion in a thermophilic methanogenic bioreactor. Appl Environ Microbiol 72: pp. 3702-3709 CrossRef
    7. Izquierdo, JA, Sizova, MV, Lynd, LR (2010) Diversity of bacteria and glycosyl hydrolase family 48 genes in cellulolytic consortia enriched from thermophilic biocompost. Appl Environ Microbiol 76: pp. 3545-3553 CrossRef
    8. Izquierdo, JA, Goodwin, L, Davenport, KW, Teshima, H, Bruce, D, Detter, C, Tapia, R, Han, S, Land, M, Hauser, L, Jeffries, CD, Han, J, Pitluck, S, Nolan, M, Chen, A, Huntemann, M, Mavromatis, K, Mikhailova, N, Liolios, K, Woyke, T, Lynd, LR (2012) Complete genome sequence of Clostridium clariflavum DSM 19732. Stand Genomic Sci 6: pp. 104-115 CrossRef
    9. Gu, Y, Ding, Y, Ren, C, Sun, Z, Rodionov, DA, Zhang, W, Yang, S, Yang, C, Jiang, W (2010) Reconstruction of xylose utilization pathway and regulons in Firmicutes. BMC Genomics 11: pp. 255 CrossRef
    10. Zverlov, VV, Schwarz, WH (2008) Bacterial cellulose hydrolysis in anaerobic environmental subsystems - Clostridium thermocellum and Clostridium stercorarium, thermophilic plant-fiber degraders. Ann N Y Acad Sci 1125: pp. 298-307 CrossRef
    11. Taghavi, S, Izquierdo, JA, van der Lelie, D (2013) Complete genome sequence of Clostridium sp. strain DL-VIII, a novel solventogenic Clostridium species isolated from anaerobic sludge. Genome Announc 1: pp. e00605鈥?3 CrossRef
    12. Steen, EJ, Kang, Y, Bokinsky, G, Hu, Z, Schirmer, A, Mcclure, A, Cardayre, SBD, Keasling, JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463: pp. 559-562 CrossRef
    13. Ho, NW, Chen, Z, Brainard, AP, Sedlak, M (1999) Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv Biochem Eng Biotechnol 65: pp. 163-192
    14. Yang, S-J, Kataeva, I, Westpheling, J, Adams, MWW (2009) Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe 鈥淎naerocellum thermophilum鈥?DSM 6725. Appl Environ Microbiol 75: pp. 4762-4769 CrossRef
    15. Helle, SS, Murray, A, Lam, J, Cameron, DR, Duff, SJB (2004) Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sulfite liquor. Bioresour Technol 92: pp. 163-171 CrossRef
    16. Kataeva, I, Foston, MB, Yang, S-J, Pattathil, S, Biswal, AK, Poole, FL, Basen, M, Rhaesa, AM, Thomas, TP, Azadi, P, Olman, V, Saffold, TD, Mohler, KE, Lewis, DL, Doeppke, C, Zeng, Y, Tschaplinski, TJ, York, WS, Davis, M, Mohnen, D, Xu, Y, Ragauskas, AJ, Ding, S-Y, Kelly, RM, Hahn, MG, Adams, MWW (2013) Carbohydrate and lignin are simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature. Energy Environ Sci 6: pp. 2186 CrossRef
    17. Kumar, R, Wyman, CE (2009) Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100: pp. 4203-4213 CrossRef
    18. Shi, J, Ebrik, MA, Bin, Y, Garlock, RJ, Balan, V, Dale, BE, Pallapolu, VR, Lee, YY, Kim, Y, Mosier, NS, Ladisch, MR, Holtzapple, MT, Falls, M, Sierra-Ramirez, R, Donohoe, BS, Vinzant, TB, Elander, RT, Hames, B, Thomas, S, Warner, RE, Wyman, CE (2011) Application of cellulase and hemicellulase to pure xylan, pure cellulose, and switchgrass solids from leading pretreatments. Bioresour Technol 102: pp. 11080-11088 CrossRef
    19. Shoham, Y, Lamed, R, Bayer, E (1999) The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol 7: pp. 275-281 CrossRef
    20. Resch, MG, Donohoe, BS, Baker, JO, Decker, SR, Bayer, EA, Beckham, GT, Himmel, ME (2013) Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction. Energy Environ Sci 6: pp. 1858 CrossRef
    21. Mohand-Oussaid, O, Payot, S, Guedon, E, Gelhaye, E, Youyou, A, Petitdemange, H (1999) The extracellular xylan degradative system in Clostridium cellulolyticum cultivated on xylan: evidence for cell-free cellulosome production. J Bacteriol 181: pp. 4035-4040
    22. Holwerda, EK, Hirst, KD, Lynd, LR (2012) A defined growth medium with very low background carbon for culturing Clostridium thermocellum. J Ind Microbiol Biotechnol 39: pp. 943-947 CrossRef
    23. Sluiter, A, Hames, B, Ruiz, R, Scarlata, C, Sluiter, J, Templeton, D (2011) 42618.
    24. Pattathil, S, Avci, U, Baldwin, D, Swennes, AG, McGill, JA, Popper, Z, Bootten, T, Albert, A, Davis, RH, Chennareddy, C, Dong, R, O鈥橲hea, B, Rossi, R, Leoff, C, Freshour, G, Narra, R, O鈥橬eil, M, York, WS, Hahn, MG (2010) A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies. Plant Physiol 153: pp. 514-525 CrossRef
    25. Pattathil, S, Avci, U, Miller, JS, Hahn, MG (2012) Immunological approaches to plant cell wall and biomass characterization: glycome profiling. Methods Mol Biol 908: pp. 61-72
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Biotechnology
    Plant Breeding/Biotechnology
    Renewable and Green Energy
    Environmental Engineering/Biotechnology
  • 出版者:BioMed Central
  • ISSN:1754-6834
文摘
Background Among themophilic consolidated bioprocessing (CBP) candidate organisms, environmental isolates of Clostridium clariflavum have demonstrated the ability to grow on xylan, and the genome of C. clariflavum DSM 19732 has revealed a number of mechanisms that foster solubilization of hemicellulose that are distinctive relative to the model cellulolytic thermophile Clostridium thermocellum. Results Growth experiments on xylan, xylooligosaccharides, and xylose reveal that C. clariflavum strains are able to completely break down xylan to xylose and that the environmental strain C. clariflavum sp. 4-2a is able to grow on monomeric xylose. C. clariflavum strains were able to utilize a larger proportion of unpretreated switchgrass, and solubilize a higher proportion of glucan, xylan, and arabinan, with strain 4-2a reaching the highest extent of solubilization of these components (64.7 to 69.4%) compared to C. thermocellum (29.5 to 42.5%). In addition, glycome immunoanalyses of residual plant biomass reveal differences in the extent of degradation of easily accessible xylans, with C. clariflavum strains having increased solubilization of this fraction of xylans relative to C. thermocellum. Conclusions C. clariflavum strains exhibit higher activity than C. thermocellum in the breakdown of hemicellulose and are capable of degrading xylan to xylooligomers and xylose. This capability seems to also play a role in the higher levels of utilization of unpretreated plant material.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700