Terrain and Direction Classification of Locomotion Transitions Using Neuromuscular and Mechanical Input
详细信息    查看全文
  • 作者:Deepak Joshi ; Michael E. Hahn
  • 关键词:Stair ; Ramp ; Gait ; Detection ; Electromyography ; Accelerometry ; Linear discriminant analysis ; Support vector machine
  • 刊名:Annals of Biomedical Engineering
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:44
  • 期:4
  • 页码:1275-1284
  • 全文大小:1,795 KB
  • 参考文献:1.Au, S., M. Berniker, and H. Herr. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw. 21:654–666, 2008.CrossRef PubMed
    2.Bao, L., and S. S. Intille. Activity Recognition from User-annotated Acceleration Data. Pervasive (LCNS 3001), Berlin: Springer, 2004.
    3.Bliss, C. I. The method of probits. Science 79:38–39, 1934.CrossRef PubMed
    4.Chowdhury, R. H., M. B. Reaz, M. A. Ali, A. A. Bakar, K. Chellappan, and T. G. Chang. Surface electromyography signal processing and classification techniques. Sensors (Basel) 13:12431–12466, 2013.CrossRef
    5.Delagi, E. F., and A. Perotto. Anatomic Guide for the Electromyographer—The Limbs (2nd ed.)., Vol. xvi. Springfield: Thomas, 1980.
    6.Dillingham, T., L. Pezzin, and E. J. Mackenzie. Limb amputation and limb deficiency: epidemiology and recent trends in the united states. South. Med. J. 95:875–883, 2002.PubMed
    7.Englehart, K., and B. Hudgins. A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 50:848–854, 2003.CrossRef PubMed
    8.Graupe, D., J. Salahi, and K. H. Kohn. Multifunctional prosthesis and orthosis control via microcomputer identification of temporal pattern differences in single-site myoelectric signals. J. Biomed. Eng. 4:17–22, 1982.CrossRef PubMed
    9.Gupta, P., and T. Dallas. Feature selection and activity recognition system using a single triaxial accelerometer. IEEE Trans. Biomed. Eng. 61:1780–1786, 2014.CrossRef PubMed
    10.Huang, H., T. A. Kuiken, and R. D. Lipschutz. A strategy for identifying locomotion modes using surface electromyography. IEEE Trans. Biomed. Eng. 56:65–73, 2009.CrossRef PubMed PubMedCentral
    11.Huang, H., F. Zhang, L. J. Hargrove, Z. Dou, D. R. Rogers, and K. B. Englehart. Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion. IEEE Trans. Biomed. Eng. 58:2867–2875, 2011.CrossRef PubMed PubMedCentral
    12.Huang, H., P. Zhou, G. Li, and T. A. Kuiken. An analysis of EMG electrode configuration for targeted muscle reinnervation based neural machine interface. IEEE Trans. Neural Syst. Rehabil. Eng. 16:37–45, 2008.CrossRef PubMed PubMedCentral
    13.Joshi, D., B. Nakamura, and M. Hahn. A novel approach for toe off estimation during locomotion and transitions on ramps and level ground. IEEE J. Biomed. Health Inform. 2014. doi:10.​1109/​JBHI.​2014.​2377749 .
    14.Kumar, S., J. Ghosh, and M. M. Crawford. Hierarchical fusion of multiple classifiers for hyperspectral data analysis. Pattern Anal. Appl. 5:210–220, 2002.CrossRef
    15.Miller, J. D., M. S. Beazer, and M. E. Hahn. Myoelectric walking mode classification for transtibial amputees. IEEE Trans. Biomed. Eng. 60:2745–2750, 2013.CrossRef PubMed
    16.Oskoei, M. A., and H. Hu. Support vector machine-based classification scheme for myoelectric control applied to upper limb. IEEE Trans. Biomed. Eng. 55:1956–1965, 2008.CrossRef PubMed
    17.Sejdic, E., K. A. Lowry, J. Bellanca, M. S. Redfern, and J. S. Brach. A comprehensive assessment of gait accelerometry signals in time, frequency and time-frequency domains. IEEE Trans. Neural Syst. Rehabil. Eng. 22:603–612, 2014.CrossRef PubMed PubMedCentral
    18.Silla, C. N., and A. A. Freitas. A survey of hierarchical classification across different application domains. Data Min. Knowl. Discov. 22:31–72, 2011.CrossRef
    19.Sup, F., A. Bohara, and M. Goldfarb. Design and control of a powered transfemoral prosthesis. Int. J. Robot. Res. 27:263–273, 2008.CrossRef
    20.Tkach, D. C., and L. J. Hargrove. Neuromechanical sensor fusion yields highest accuracies in predicting ambulation mode transitions for trans-tibial amputees. Conf. Proc. IEEE Eng. Med. Biol. Soc. 3074–3077:2013, 2013.
    21.Young, A. J., A. M. Simon, and L. J. Hargrove. A training method for locomotion mode prediction using powered lower limb prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 22:671–677, 2014.CrossRef PubMed
    22.Yuan, K., Q. Wang, and L. Wang. Fuzzy-logic-based terrain identification with multisensor fusion for transtibial amputees. IEEE/ASME Trans. Mechtron. 20:618–630, 2015.CrossRef
    23.Ziegler-Graham, K., E. J. Mackenzie, P. L. Ephraim, T. G. Travison, and R. Brookmeyer. Estimating the prevalence of limb loss in the united states: 2005 to 2050. Arch. Phys. Med. Rehabil. 89:422–429, 2008.CrossRef PubMed
  • 作者单位:Deepak Joshi (1) (2)
    Michael E. Hahn (2)

    1. Department of Electrical and Electronics Engineering, Graphic Era University, Dehradun, India
    2. Department of Human Physiology, University of Oregon, 122 Esslinger Hall, 1240 University of Oregon, Eugene, OR, 97401, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Biomedicine
    Biomedical Engineering
    Biophysics and Biomedical Physics
    Mechanics
    Biochemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-9686
文摘
To perform seamless transitions in powered lower limb prostheses, accurate classification of transition type is required a priori. We propose a structure to detect direction (ascent or descent) and terrain (ramp or stairs) patterns when a person transitions from over ground to stairs or ramp locomotion. We compared electromyography (EMG) and accelerometry performance with an emphasis on sensor fusion for improving classification. Seven healthy subjects were recruited for this initial study. Data were collected with accelerometers and EMG electrodes on the dominant leg, while subjects transitioned from over ground to ramp (ascent and descent) and stair (ascent and descent) locomotion. Linear discriminant analysis and support vector machine approaches were used as classifiers using feature spaces of both sensor types. The results indicate that transitions are better classified as terrain type than direction type (p < 0.001), suggesting a terrain focused approach for an efficient structure. We also show that EMG and accelerometry data sources are complementary across the transitional gait cycle, suggesting sensor fusion for robust classification. These findings suggest that a terrain and direction focused classification approach will be useful for inclusion in classification approaches utilized in lower limb amputee samples.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700