EEG Correlates of Relative Motion Encoding
详细信息    查看全文
  • 作者:Evelina Thunell ; Gijs Plomp ; Haluk Ögmen ; Michael H. Herzog
  • 关键词:Apparent motion ; Electroencephalography (EEG) ; Non ; retinotopic processing ; Ternus–Pikler display
  • 刊名:Brain Topography
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:29
  • 期:2
  • 页码:273-282
  • 全文大小:1,167 KB
  • 参考文献:Allison T, Puce A, McCarthy G (2000) Social perception from visual cues: role of the STS region. Trends Cogn Sci 4:267–278CrossRef PubMed
    Amano K, Wandell BA, Dumoulin SO (2009) Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. J Neurophysiol 102:2704–2718. doi:10.​1152/​jn.​00102.​2009 PubMedCentral CrossRef PubMed
    Bach M (1996) The “Freiburg Visual Acuity Test”—automatic measurement of the visual acuity. Optom Vis Sci 73:49–53CrossRef PubMed
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. R Stat Soc Ser B 57:289–300
    Boi M, Ögmen H, Krummenacher J et al (2009) A (fascinating) litmus test for human retino- vs. non-retinotopic processing. J Vis 9:1–11. doi:10.​1167/​9.​13.​5 CrossRef PubMed
    Breitmeyer BG, Ritter A (1986a) The role of visual pattern persistence in bistable stroboscopic motion. Vis Res 26:1801–1806CrossRef PubMed
    Breitmeyer BG, Ritter A (1986b) Visual persistence and the effect of eccentric viewing, element size, and frame duration on bistable stroboscopic motion percepts. Percept Psychophys 39:275–280CrossRef PubMed
    Bridgeman B, Van der Heijden AHC, Velichkovsky BM (1994) A theory of visual stability across saccadic eye movements. Behav Brain Sci 17:247–258. doi:10.​1017/​S0140525X0003436​1 CrossRef
    Brunet D, Murray MM, Michel CM (2011) Spatiotemporal analysis of multichannel EEG: CARTOOL. Comput Intell Neurosci 2011:813870. doi:10.​1155/​2011/​813870 PubMedCentral CrossRef PubMed
    de Peralta Grave, Menendez R, Murray MM, Michel CM et al (2004) Electrical neuroimaging based on biophysical constraints. Neuroimage 21:527–539. doi:10.​1016/​j.​neuroimage.​2003.​09.​051 CrossRef
    Decety J, Grèzes J (1999) Neural mechanisms subserving the perception of human actions. Trends Cogn Sci 3:172–178CrossRef PubMed
    Duhamel J-R, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:90–92CrossRef PubMed
    Duncker K (1929) Über induzierte Bewegung. (Eine Betrag zur Theorie optisch wahrgenommener Bewegung.). Psychol Forsch 12:180–259CrossRef
    Gardner JL, Merriam EP, Movshon JA, Heeger DJ (2008) Maps of visual space in human occipital cortex are retinotopic, not spatiotopic. J Neurosci 28:3988–3999. doi:10.​1523/​JNEUROSCI.​5476-07.​2008 PubMedCentral CrossRef PubMed
    Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878. doi:10.​1006/​nimg.​2001.​1037 CrossRef PubMed
    Goebel R, Khorram-Sefat D, Muckli L et al (1998) The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. Eur J Neurosci 10:1563–1573CrossRef PubMed
    Johansson G (1950) Configurations in event perception, an experimental study. Almqvist & Wiksells, Uppsala
    Klimesch W (2011) Evoked alpha and early access to the knowledge system: the P1 inhibition timing hypothesis. Brain Res 1408:52–71. doi:10.​1016/​j.​brainres.​2011.​06.​003 PubMedCentral CrossRef PubMed
    Kuba M, Kubová Z, Kremlácek J, Langrová J (2007) Motion-onset VEPs: characteristics, methods, and diagnostic use. Vis Res 47:189–202. doi:10.​1016/​j.​visres.​2006.​09.​020 CrossRef PubMed
    Kubová Z, Kuba M, Spekreijse H, Blakemore C (1995) Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vis Res 35:197–205CrossRef PubMed
    Lehmann D, Skrandies W (1980) Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr Clin Neurophysiol 48:609–621CrossRef PubMed
    Liu T, Slotnick SD, Yantis S (2004) Human MT+ mediates perceptual filling-in during apparent motion. Neuroimage 21:1772–1780. doi:10.​1016/​j.​neuroimage.​2003.​12.​025 CrossRef PubMed
    Mesulam MM (1981) A cortical network for directed attention and unilateral neglect. Ann Neurol 10:309–325CrossRef PubMed
    Muckli L, Kriegeskorte N, Lanfermann H et al (2002) Apparent motion: event-related functional magnetic resonance imaging of perceptual switches and States. J Neurosci 22:RC219PubMed
    Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 20:249–264. doi:10.​1007/​s10548-008-0054-5 CrossRef PubMed
    Nobre AC, Rao A, Chelazzi L (2006) Selective attention to specific features within objects: behavioral and electrophysiological evidence. J Cogn Neurosci 18:539–561. doi:10.​1162/​jocn.​2006.​18.​4.​539 CrossRef PubMed
    Pantle A, Picciano L (1976) A multistable movement display: evidence for two separate motion systems in human vision. Science 193:500–502CrossRef PubMed
    Pascual-Marqui RD, Michel CM, Lehmann D (1995) Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng 42:658–665. doi:10.​1109/​10.​391164 CrossRef PubMed
    Pikler J (1917) Sinnesphysiologische Untersuchungen. Barth, Leipzig
    Plomp G, Michel CM, Herzog MH (2010) Electrical source dynamics in three functional localizer paradigms. Neuroimage 53:257–267. doi:10.​1016/​j.​neuroimage.​2010.​06.​037 CrossRef PubMed
    Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42. doi:10.​1146/​annurev.​ne.​13.​030190.​000325 CrossRef PubMed
    Rolfs M, Jonikaitis D, Deubel H, Cavanagh P (2011) Predictive remapping of attention across eye movements. Nat Neurosci 14:252–256. doi:10.​1038/​nn.​2711 CrossRef PubMed
    Rouder JN, Morey RD, Speckman PL, Province JM (2012) Default Bayes factors for ANOVA designs. J Math Psychol 56:356–374CrossRef
    Sereno MI, Dale AM, Reppas JB et al (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893CrossRef PubMed
    Sperry RW (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43:482–489CrossRef PubMed
    Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-D proportional system: an approach to cerebral imaging. Thieme, New York
    Tanaka E, Noguchi Y, Kakigi R, Kaneoke Y (2007) Human cortical response to various apparent motions: a magnetoencephalographic study. Neurosci Res 59:172–182. doi:10.​1016/​j.​neures.​2007.​06.​1471 CrossRef
    Taylor MJ (2002) Non-spatial attentional effects on P1. Clin Neurophysiol 113:1903–1908CrossRef PubMed
    Ternus J (1926) Experimentelle Untersuchung über phänomenale Identität. Psychol Forsch 7:81–136CrossRef
    Von Holst E, Mittelstaedt H (1950) Das Reafferenzprinzip. (Wechselwirkungen zwischen Zentralnervensystem und Peripherie). Naturwissenschaften 37:464–476CrossRef
    Wurtz RH (2008) Neuronal mechanisms of visual stability. Vision Res 48:2070–2089. doi:10.​1016/​j.​visres.​2008.​03.​021 PubMedCentral CrossRef PubMed
  • 作者单位:Evelina Thunell (1)
    Gijs Plomp (1) (2)
    Haluk Ögmen (3)
    Michael H. Herzog (1)

    1. Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
    2. Functional Brain Mapping Lab, Department of Fundamental Neuroscience, University of Geneva, 24 Rue du Général-Dufour, 1211, Geneva 4, Switzerland
    3. Department of Electrical and Computer Engineering, Center for Neuro-Engineering and Cognitive Science, University of Houston, N 308 Engineering Building 1, Houston, TX, 77204-4005, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Psychiatry
    Neurology
  • 出版者:Springer New York
  • ISSN:1573-6792
文摘
A large portion of the visual cortex is organized retinotopically, but perception is usually non-retinotopic. For example, a reflector on the spoke of a bicycle wheel appears to move on a circular or prolate cycloidal orbit as the bicycle moves forward, while in fact it traces out a curtate cycloidal trajectory. The moving bicycle serves as a non-retinotopic reference system to which the motion of the reflector is anchored. To study the neural correlates of non-retinotopic motion processing, we used the Ternus–Pikler display, where retinotopic processing in a stationary reference system is contrasted against non-retinotopic processing in a moving one. Using high-density EEG, we found similar brain responses for both retinotopic and non-retinotopic rotational apparent motion from the earliest evoked peak (around 120 ms) and throughout the rest of the visual processing, but only minor correlates of the motion of the reference system itself (mainly around 100–120 ms). We suggest that the visual system efficiently discounts the motion of the reference system from early on, allowing a largely reference system independent encoding of the motion of object parts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700