Comparative 3D microanatomy and histology of the eyes and central nervous systems in coleoid cephalopod hatchlings
详细信息    查看全文
  • 作者:Elvira Wild (1)
    Tim Wollesen (4)
    Gerhard Haszprunar (1) (2) (3)
    Martin He脽 (1) (3)

    1. BioZentrum LMU
    ; Gro脽haderner Stra脽e 2-4 ; 82152 ; Planegg-Martinsried ; Germany
    4. Integrative Zoologie
    ; Universit盲t Wien ; Althanstra脽e 14 ; 1090 ; Wien ; Austria
    2. Zoologische Staatssammlung M眉nchen
    ; M眉nchhausenstra脽e 21 ; 81247 ; M眉nchen ; Germany
    3. GeoBioCenter LMU
    ; Richard-Wagner-Stra脽e 10 ; 80333 ; M眉nchen ; Germany
  • 关键词:Functional morphology ; Volumetry ; Animal vision ; 3D ; rendering ; Interactive model
  • 刊名:Organisms Diversity & Evolution
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:15
  • 期:1
  • 页码:37-64
  • 全文大小:19,515 KB
  • 参考文献:1. Archer, S. N., Djamgoz, M. B. A., Loew, E. R., Partridge, J. C., & Vallerga, S. (1999). / Adaptive mechanisms in the ecology of vision (p. 680). Dordrecht: Kluwer Academic Publishers. CrossRef
    2. Boletzky, S. V. (1974). The 鈥渓arvae鈥?of Cephalopoda: a review. / Thalassia Jugoslavica, 10, 45鈥?6.
    3. Boletzky, S. V. (2003). Biology of early life stages in cephalopod molluscs. / Advances in Marine Biology, 44, 143鈥?03. CrossRef
    4. Boletzky, S. V., & Boletzky, M. V. V. (1973). Observations on the embryonic and early post-embryonic development of / Rossia macrosoma (Mollusca, Cephalopoda). / Helgolaender Meeresuntersuchungen, 25, 135鈥?61. CrossRef
    5. Boletzky, S. V., Boletzky, M. V. V., Froesch, D., & G盲tzi, V. (1971). Laboratory rearing of Sepiolinae (Mollusca, Cephalopoda). / Marine Biology, 8, 62鈥?7.
    6. Boletzky, S. V., Fioroni, P., & Guerra, A. (1997). Proceedings of the second international symposium on functional morphology of cephalopods. / Vie et milieu - Life and environment, 47(2), 187.
    7. Bone, Q., & Marshall, N. B. (1985). / Biologie der Fische. Stuttgart: Gustav Fischer Verlag.
    8. Bonichon, A. (1967). Contribution 脿 l麓etude de la neuros茅cretion et de l麓endocrinologie chez les C茅phalpodes. I. Octopus vulgaris. / Vie et milieu - Life and environment, 18, 27鈥?63.
    9. Boycott, B. B. (1961). The functional organization of the brain of the cuttlefish / Sepia officinalis. Proceedings of the Royal Society B: Biological Sciences, 153, 503鈥?34. CrossRef
    10. Boycott, B. B., & Young, J. Z. (1955). A memory system in / Octopus vulgaris Lamarck. / Proceedings of the Royal Society B: Biological Sciences, 153, 503鈥?34. CrossRef
    11. Bozzano, A., Pankhurst, P. M., Moltschaniwskyj, N. A., & Villanueva, R. (2009). Eye development in southern calamary, / Sepioteuthis australis, embryos and hatchlings. / Marine Biology, 156, 1359鈥?373. CrossRef
    12. Budelmann, B. U. (1995). The cephalopod nervous system: what evolution has made of the molluscan design. In O. Breidbach & W. Kutsch (Eds.), / The nervous system of Invertebrates: an evolutionary and comparative approach (pp. 115鈥?38). Basel: Birkh盲user. CrossRef
    13. Budelmann, B. U., Schipp, R., & Boletzky, S. V. (1997). Cephalopoda. In F. W. Harrison & A. J. Kohn (Eds.), / Microscopic anatomy of invertebrates (Vol. 6A: Mollusca II, pp. pp. 119鈥損p. 414). New York: Wiley-Liss.
    14. Claes, M. F. (1996). Functional morphology of the white bodies of the cephalopod mollusc / Sepia officinalis. Acta Zoologica (Stockholm), 77, 173鈥?90. CrossRef
    15. Collewijn, H. (1970). Oculomotor reactions in the cuttlefish, / Sepia officinalis. The Journal of Experimental Biology, 52(2), 369鈥?84.
    16. Collin, S. P., & Partridge, J. C. (1996). Fish vision: retinal specializations in the eyes of deep-sea teleosts. / Journal of Fish Biology, 49, 157鈥?74. CrossRef
    17. Di Cristo, C., Van Minnen, J., & Di Cosmo, A. (2005). The presence of APGWamide in / Octopus vulgaris: a possible role in the reproductive behavior. / Peptides, 26(1), 53鈥?2. CrossRef
    18. Di Cristo, C., De Lisa, E., & Di Cosmo, A. (2009). Control of GnRH expression in the olfactory lobe of / Octopus vulgaris. Peptides, 30(3), 538鈥?44. CrossRef
    19. Dietl, M. J. (1878). Untersuchungen 眉ber die Organisation des Gehirns wirbelloser Thiere (Cephalopoden, Tethys). / Sitzungsberichte der Akademie der Wissenschaften in Wien, 77, 481鈥?33.
    20. Fishelson, L., Ayalon, G., Zverdling, A., & Holzman, R. (2004). Comparative morphology of the eye (with particular attention to the retina) in various species of cardinal fish (Apogonidae, Teleostei). / The Anatomical Record.Part A. / Discoveries in Molecular, Cellular, and Evolutionary Biology, 277(2), 249鈥?61. CrossRef
    21. Fr枚sch, D. (1971). Quantitative Untersuchungen am Zentralnervensystem der Schl眉pfstadien von zehn mediterranen Cephalopodenarten. / Revue Suisse de Zoologie, 57, 1069鈥?122.
    22. Fr枚sch, D. (1974). The subpedunculate lobe of the octopus brain: evidence for dual function. / Brain Research, 75(2), 277鈥?85. CrossRef
    23. Gilbert, D. L., Adelman, W. J., & Arnold, J. M. (1990). / Squid as experimental animals (p. 548). New York: Plenum Press. CrossRef
    24. Graziadei, P. (1971). The nervous system of the arms. In J. Z. Young (Ed.), / The anatomy of the nervous system of Octopus vulgaris (pp. 45鈥?1). Oxford: Claredon Press.
    25. Groeger, G., Cotton, P. A., & Williamson, R. (2005). Ontogenetic changes in the visual acuity of / Sepia officinalis measured using the optomotor response. / Canadian Journal of Zoology, 83(2), 274鈥?79. CrossRef
    26. Groeger, G., Chrachri, A., & Williamson, R. (2006). Changes in cuttlefish retinal sensitivity during growth. / Vie et Milieu, 56(2), 167鈥?73.
    27. Hanlon, R. T., & Messenger, J. B. (1988). Adaptive coloration in young cuttlefish ( / Sepia officinalis L.): the morphology and development of body patterns and their relation to behaviour. / Philosophical Transactions of the Royal Society, B: Biological Sciences, 320, 437鈥?87. CrossRef
    28. Hanlon, R. T., & Messenger, J. B. (1996). / Cephalopod behaviour (p. 232). Cambridge: Cambridge University Press.
    29. Hao, Z.-L., Zhang, X.-M., Kudo, H., & Kaeriyama, M. (2010). Development of the retina in the cuttlefish / Sepia esculenta. Journal of Shellfish Research, 29(2), 463鈥?70. CrossRef
    30. He脽, M. (2007). Semi-automated mapping of cell nuclei in 3D-stacks from optical-sectioning microscopy. In P. Perner & O. Salvetti (Eds.), / Advances in mass data analysis of signals and images in medicine, biotechnology and chemistry (Lecture Notes in Computer Science (Vol. 4826, pp. pp. 156鈥損p. 164). Berlin: Springer. CrossRef
    31. Hillig, R. (1912). Das Nervensystem von / Sepia officinalis L. / Zeitschrift f眉r Wissenschaftliche Zoologie, 101, 736鈥?00.
    32. Jereb, P., & Roper, C. F. E. (2005). / Cephalopods of the world: an annotated and illustrated catalogue of cephalopod species known to date. Volume 1. Chambered nautiluses and sepioids (Nautilidae, Sepiidae, Sepiolidae, Sepiadariidae, Idiosepiidae and Spirulidae) (Vol. 4(1), FAO species catalogue for fishery purposes). Rome: FAO. 262 p.
    33. Jereb, P., & Roper, C. F. E. (2010). / Cephalopods of the world: an annotated and illustrated catalogue of cephalopod species known to date. Volume 2. Myopsid and oegopsid squids (FAO Species catalogue for fishery purposes, Vol. 4(2)). Rome: FAO. 605 p.
    34. Kerbl, A., Handschuh, S., N枚dl, M.-T., Metscher, B., Walzl, M., & Wanninger, A. (2013). Micro-CT in cephalopod research: Investigating the internal anatomy of a sepiolid squid using a non-destructive technique with special focus on the ganglionic system. / Journal of Experimental Marine Biology and Ecology, 447, 140鈥?48. CrossRef
    35. Kunze, P. (1972). Comparative studies of arthropod superposition eyes. / Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 76(4), 347鈥?57.
    36. Lauder, G. V. (1981). Form and function: structural analysis in evolutionary morphology. / Paleobiology, 7(4), 430鈥?42.
    37. Le Gall, S., Feral, C., Van Minnen, J., & Marchand, C. R. (1988). Evidence for peptidergic innervation of the endocrine optic gland in / Sepia by neurons showing FMRFamide-like immunoreactivity. / Brain Research, 462(1), 83鈥?8. CrossRef
    38. Lythgoe, J. N. (1979). / The ecology of vision (p. 270). Oxford: Clarendon Press.
    39. Maddock, L., & Young, J. Z. (1987). Quantitative differences among the brains of cephalopods. / Journal of Zoology, 212(4), 739鈥?67. CrossRef
    40. Makino, A., & Miyazaki, T. (2010). Topographical distribution of visual cell nuclei in the retina in relation to the habitat of five species of Decapodiformes (Cephalopoda). / Journal of Molluscan Studies, 76(2), 180鈥?85. CrossRef
    41. Mangold, K., & Boletzky, S. (1973). New data on reproductive biology and growth of / Octopus vulgaris. Marine Biology, 19(1), 7鈥?2. CrossRef
    42. Marquis, F. (1989). Die Embryonalentwicklung des Nervensystems von / Octopus vulgaris Lam. (Cephalopoda. Octopoda), eine histologische Analyse. / Verhandlungen der naturforschenden Gesellschaft Basel, 99, 23鈥?6.
    43. Martin, R. (1965). On the structure and embryonic development of the giant fibre system of the squid / Loligo vulgaris. Zeitschrift f眉r Zellforschung und Mikroskopische Anatomie, 67, 77鈥?5. CrossRef
    44. Martin, R., & Rungger, D. (1966). Zur Struktur und Entwicklung des Riesenfasersystems erster Ornung von / Sepia officinalis L. (Cephalopoda). / Zeitschrift f眉r Zellforschung und Mikroskopische Anatomie, 74, 454鈥?63. CrossRef
    45. Martin, G. R., Wilson, K.-J., Wild, J. M., Parsons, S., Kubke, M. F., & Corfield, J. (2007). Kiwi forego vision in the guidance of their nocturnal activities. / PLoS ONE, 2(2), e198. CrossRef
    46. Meister, G. (1972). Organogenese von / Loligo vulgaris Lam. (Mollusca, Cephalopoda, Teuthoidea, Myopsida, Loliginidae). / Zoologische Jahrb眉cher. Abteilung f眉r Anatomie und Ontogenie der Tiere, 59, 247鈥?00.
    47. Messenger, J. B. (1967a). The effects on locomotion of lesions to the viso-motor system in / Octopus. Proceedings of the Royal Society B: Biological Sciences, 167, 252鈥?81. CrossRef
    48. Messenger, J. B. (1967b). The peduncle lobe: a viso-motor centre in / Octopus. Proceedings of the Royal Society B: Biological Sciences, 167, 225鈥?51. CrossRef
    49. Messenger, J. B. (1968). The visual attack of the cuttlefish, / Sepia officinalis. Animal Behaviour, 16(2), 342鈥?57. CrossRef
    50. Messenger, J. B. (1979). The nervous system of / Loligo: IV. The peduncle and olfactory lobes. / Philosophical Transactions of the Royal Society, B: Biological Sciences, 285(1008), 275鈥?09. CrossRef
    51. Nixon, M., & Mangold, K. (1996). The early life of / Octopus vulgaris (Cephalopoda: Octopodidae) in the plankton and at settlement: a change in lifestyle. / Journal of Zoology, 239(2), 301鈥?27. CrossRef
    52. Nixon, M., & Mangold, K. (1998). The early life of / Sepia officinalis, and the contrast with that of / Octopus vulgaris (Cephalopoda). / Journal of Zoology, 245(04), 407鈥?21. CrossRef
    53. Nixon, M., & Young, J. Z. (2003). / The brains and lives of cephalopods (p. 408). Oxford: Oxford University Press.
    54. Norman, M. (2003). / Cephalopods - A world guide (2nd ed., p. 320). Hackenheim: Conch books.
    55. Novicki, A., Budelmann, B. U., & Hanlon, R. T. (1990). Brain pathways of the chromatophore system in the squid / Lolliguncula brevis. Brain Research, 519(1鈥?), 315鈥?23. CrossRef
    56. Packard, A. (1972). Cephalopods and fish: the limits of convergence. / Biological Reviews, 47(2), 241鈥?07. CrossRef
    57. Pfefferkorn, A. (1915). Das Nervensystem der Octopoden. / Zeitschrift f眉r Wissenschaftliche Zoologie, 114, 425鈥?31.
    58. Poirier, R., Chichery, R., & Dickel, L. (2004). Effects of rearing conditions on sand digging efficiency in juvenile cuttlefish. / Behavioural Processes, 67(2), 273鈥?79. CrossRef
    59. Richardson, K. C., Jarett, L., & Finke, E. H. (1960). Embedding in epoxy resins for ultrathin sectioning in electron microscopy. / Stain Technology, 35, 313鈥?23.
    60. Richter, K. (1913). Das Nervensystem der Oegopsiden. / Zeitschrift f眉r Wissenschaftliche Zoologie, 106, 289鈥?08.
    61. Roper, C. F. E., Sweeney, M. J., & Nauen, C. E. (1984). / Cephalopods of the world. An annotated and illustrated catalogue of species of interest to fisheries (Vol. 3, FAO Fisheries Synopsis). Rome: FAO. 277 p.
    62. Ruthensteiner, B. (2008). Soft Part 3D visualization by serial sectioning and computer reconstruction. / Zoosymposia, 1, 63鈥?00. CrossRef
    63. Ruthensteiner, B., & He脽, M. (2008). Embedding 3D models of biological specimens in PDF publications. / Microscopy Research and Technique, 71(11), 778鈥?86. CrossRef
    64. Scharpf, E., Haszprunar, G., & He脽, M. Coleoid cephalopod retinae - a comparative morphological approach. In / 3rd International Symposium Coleoid Cephalopods through Time, Luxemburg, 2008 (pp. 25鈥?7).
    65. Schkaff, B. (1914). Zur Kenntnis des Nervensystems der Myopsiden. / Zeitschrift f眉r Wissenschaftliche Zoologie, 109, 591鈥?30.
    66. Shigeno, S., & Yamamoto, M. (2002). Organization of the nervous system in the pygmy cuttlefish, / Idiosepius paradoxus Ortmann (Idiosepiidae, Cephalopoda). / Journal of Morphology, 254(1), 65鈥?0. CrossRef
    67. Shigeno, S., Kidokoro, H., Tsuchiya, K., Segawa, S., & Yamamoto, M. (2001a). Development of the brain in the oegopsid squid, / Todarodes pacificus: an atlas from hatchling to juvenile. / Zoological Science, 18(8), 1081鈥?096. CrossRef
    68. Shigeno, S., Kidokoro, H., Tsuchiya, K., Segawa, S., & Yamamoto, M. (2001b). Development of the brain in the oegopsid squid, / Todarodes pacificus: an atlas up to the hatching stage. / Zoological Science, 18(4), 527鈥?41. CrossRef
    69. Shigeno, S., Tsuchiya, K., & Segawa, S. (2001c). Conserved topological patterns and heterochronies in loliginid cephalopods: comparative developmental morphology of the oval squid / Sepioteuthis lessoniana. Invertebrate Reproduction & Development, 39(3), 161鈥?74. CrossRef
    70. Shigeno, S., Tsuchiya, K., & Segawa, S. (2001d). Embryonic and paralarval development of the central nervous system of the loliginid squid / Sepioteuthis lessoniana. The Journal of Comparative Neurology, 437(4), 449鈥?75. CrossRef
    71. Tompsett, D. H. (1939). / Sepia (L.M.B.C. memoirs on typical British marine plants and animals, Vol. 32): University Press. 184 p.
    72. Villanueva, R., Nozais, C., & Boletzky, S. V. (1995). The planktic life of octopuses. / Nature, 377(6545), 107鈥?07. CrossRef
    73. Villanueva, R., Nozais, C., & Boletzky, S. V. (1996). Swimming behaviour and food searching in planktic / Octopus vulgaris Cuvier from hatching to settlement. / Journal of Experimental Marine Biology and Ecology, 208(1鈥?), 169鈥?84.
    74. Warrant, E. J., & Locket, N. A. (2004). Vision in the deep sea. / Biological Reviews, 79(3), 671鈥?12. CrossRef
    75. Warrant, E. J., & McIntyre, P. (1991). Strategies for retinal design in arthropod eyes of low F-number. / Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 168(4), 499鈥?12. CrossRef
    76. Wells, M. J. (1958). Factors affecting reactions to / Mysis by newly hatched / Sepia. Behaviour, 13(1鈥?), 96鈥?11. CrossRef
    77. Wells, M. J., & Wells, J. (1959). Hormonal control of sexual maturity in / Octopus. The Journal of Experimental Biology, 36(1), 1鈥?3.
    78. Wells, M. J., & Young, J. Z. (1972). The median inferior frontal lobe and touch learning in the octopus. / The Journal of Experimental Biology, 56(2), 381鈥?02.
    79. West, J. A., Sivak, J. G., & Doughty, M. J. (1995). Microscopical evaluation of the crystalline lens of the squid ( / Loligo opalescens) during embryonic development. / Experimental Eye Research, 60(1), 19鈥?5. CrossRef
    80. Willekens, B., Vrensen, G., Jacob, T., & Duncan, G. (1984). The ultrastructure of the lens of the cephalopod / Sepiola: a scanning electron microscopic study. / Tissue & Cell, 16(6), 941鈥?50. CrossRef
    81. Wirz, K. (1954). Etudes quantitatives sur le systeme nerveux des Cephalopodes. / Comptes Rendus Hebdomadaires des S茅ances de l鈥橝cad茅mie des Sciences, 238(12), 1353鈥?355.
    82. Wirz, K. (1959). / 脡tude biom茅trique du syst猫me nerveux des c茅phalopodes: Presses universitaires de France. 40 p.
    83. Wollesen, T., Loesel, R., & Wanninger, A. (2008). FMRFamide-like immunoreactivity in the central nervous system of the cephalopod mollusc, / Idiosepius notoides. Acta Biologica Hungarica, 59, 111鈥?16. CrossRef
    84. Wollesen, T., Loesel, R., & Wanninger, A. (2009). Pygmy squids and giant brains: mapping the complex cephalopod CNS by phalloidin staining of vibratome sections and whole-mount preparations. / Journal of Neuroscience Methods, 179(1), 63鈥?7. CrossRef
    85. Wollesen, T., Cummins, S. F., Degnan, B. M., & Wanninger, A. (2010a). FMRFamide gene and peptide expression during central nervous system development of the cephalopod mollusk, / Idiosepius notoides. Evolution & Development, 12(2), 113鈥?30. CrossRef
    86. Wollesen, T., Degnan, B. M., & Wanninger, A. (2010b). Expression of serotonin (5-HT) during CNS development of the cephalopod mollusk, / Idiosepius notoides. Cell and Tissue Research, 342(2), 161鈥?78. CrossRef
    87. Wollesen, T., Nishiguchi, M. K., Seixas, P., Degnan, B. M., & Wanninger, A. (2012a). The VD1/RPD2 alpha 1-neuropeptide is highly expressed in the brain of cephalopod mollusks. / Cell and Tissue Research, 348(3), 439鈥?52. CrossRef
    88. Wollesen, T., Sukhsangchan, C., Seixas, P., Nabhitabhata, J., & Wanninger, A. (2012b). Analysis of neurotransmitter distribution in brain development of benthic and pelagic octopod cephalopods. / Journal of Morphology, 273(7), 776鈥?90. CrossRef
    89. Yamamoto, M. (1985). Ontogeny of the visual system in the cuttlefish Sepiella japonica. I. Morphological differentiation of the visual cell. / The Journal of Comparative Neurology, 232(3), 347鈥?61. CrossRef
    90. Yamamoto, M., Shimazaki, Y., & Shigeno, S. (2003). Atlas of the embryonic brain in the pygmy squid, / Idiosepius paradoxus. Zoological Science, 20(2), 163鈥?79. CrossRef
    91. Yamazaki, A., Yoshida, M., & Uematsu, K. (2002). Post-hatching development of the brain in / Octopus ocellatus. Zoological Science, 19(7), 763鈥?71. CrossRef
    92. Young, J. Z. (1962). The optic lobes of / Octopus vulgaris. Philosophical Transactions of the Royal Society, B: Biological Sciences, 245(718), 19鈥?8. CrossRef
    93. Young, J. Z. (1965a). The buccal nervous system of / Octopus. Philosophical Transactions of the Royal Society, B: Biological Sciences, 249(755), 27鈥?4. CrossRef
    94. Young, J. Z. (1965b). The centres for touch discrimination in / Octopus. Philosophical Transactions of the Royal Society, B: Biological Sciences, 249(755), 45鈥?7. CrossRef
    95. Young, J. Z. (1965c). The nervous pathways for poisoning, eating and learning in / Octopus. The Journal of Experimental Biology, 43(3), 581鈥?93.
    96. Young, J. Z. (1965d). The organization of a memory system. / Proceedings of the Royal Society B: Biological Sciences, 163(992), 285鈥?20. CrossRef
    97. Young, J. Z. (1970). Neurovenous tissues in cephalopods. / Philosophical Transactions of the Royal Society, B: Biological Sciences, 257(815), 309鈥?21. CrossRef
    98. Young, J. Z. (1971). / The anatomy of the nervous system of Octopus vulgaris (p. 690). Oxford: Clarendon Press.
    99. Young, J. Z. (1974). The central nervous system of / Loligo. I. The optic lobe. / Philosophical Transactions of the Royal Society B: Biological Sciences, 267(885), 263鈥?02. CrossRef
    100. Young, J. Z. (1976a). The 鈥榗erebellum鈥?and the control of eye movements in cephalopods. / Nature, 264(5586), 572鈥?74. CrossRef
    101. Young, J. Z. (1976b). The nervous system of / Loligo. II. Suboesophageal centres. / Philosophical Transactions of the Royal Society B: Biological Sciences, 274(930), 101鈥?67. CrossRef
    102. Young, J. Z. (1977). The nervous system of / Loligo. III. Higher motor centres: the basal supraoesophageal lobes. / Philosophical Transactions of the Royal Society B: Biological Sciences, 276(948), 351鈥?98. CrossRef
    103. Young, J. Z. (1979). The nervous system of / Loligo. V. The vertical lobe complex. / Philosophical Transactions of the Royal Society, B: Biological Sciences, 285(1009), 311鈥?54. CrossRef
    104. Young, J. Z. (1983). The distributed tactile memory system of / Octopus. Proceedings of the Royal Society B: Biological Sciences, 218(1211), 135鈥?76. CrossRef
    105. Young, R. E., & Vecchione, M. (2004). Oegopsida Orbigny, 1845. Version 18 August 2004 (under construction). http://tolweb.org/Oegopsida/19407/2004.08.18
    106. Young, R. E., Vecchione, M., & Mangold, K. M. (2012). Cephalopoda Cuvier 1797. Octopods, squids, nautiluses, etc. Version 04 July 2012 (under construction). http://tolweb.org/Cephalopoda/19386/2012.07.04.
  • 刊物主题:Biodiversity; Evolutionary Biology; Developmental Biology; Animal Systematics/Taxonomy/Biogeography; Plant Systematics/Taxonomy/Biogeography;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1618-1077
文摘
Adaptive radiation of an animal group is the evolutionary variation of morphology, physiology, and behavior opening up new habitats and resources. An impressive example of the reciprocal interdependency of form and function is found in the anatomy of cephalopod visual and central nervous systems. Interspecific differences of sensory organs and signal processing structures reflect the eco-functional context, e.g., the species-specific demands emanating from habitat and foraging behavior. To substantiate this, we investigated the eyes and brain neuropils of early post-hatching stages of six coleoid cephalopod species (Sepia officinalis, Rossia macrosoma, Sepietta obscura, Idiosepius notoides, Loligo vulgaris, and Octopus vulgaris), showing different size and inhabiting different ethoecological niches. Comprehensive 3D structure data sets were produced in light microscopic resolution, i.e., semithin section series of the head region (histology presented for I. notoides, R. macrosoma, and S. obscura for the first time) and 3D surface renderings of the neuropils, enabling the display of all components in arbitrary perspectives and combinations, and comparative volumetic anaylsis of homologous lobe neuropils. Differing in absolute size considerably, the visual and central nervous systems of the six species follow the same bauplan in adult-like configuration. The visual sense obviously is of paramount importance already after hatching, but also, equilibrioception and olfaction are well developed. The species-specific shapes of various components show that some plasticity and distinct differences in volumetric ratios are found, subject to their functional relevance and to different demands of the lifestyle on the brachial and swimming motor function, on camouflage, as well as on sensoric and cognitive abilities.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700