Comparison of the microbial community composition of pristine rock cores and technical influenced well fluids from the Ketzin pilot site for CO2 storage
详细信息    查看全文
文摘
Two geological formations at the CO2 storage pilot site in Ketzin (Germany) were geochemically and microbiologically characterized to further evaluate changes resulting from CO2 injection. Well fluids were collected from both Stuttgart (storage formation, ~650 m depth) and Exter Formations (~400 m depth, overlying the caprock) either through pump tests or downhole samplings. Rock samples were retrieved during a deep drilling into the Exter Formation and primarily comprised quartz, ferrous dolomite or ankerite, calcite, analcime, plagioclase and clay minerals, as determined through X-ray diffraction analyses. In the rocks, the total organic carbon (TOC), which potentially contributes to microbial growth, was mostly below 1000 mg kg−1. The geochemical characterization of fluids revealed significant differences in the ionic composition between both formations. The microbial characterization was performed through fluorescence in situ hybridization and 16S rRNA gene fingerprinting. In the fluids obtained from the Stuttgart Formation, the microbial activity was affected by the relatively high TOC, introduced by the organic drill mud. The total cell counts were approximately 106 cells mL−1. The microbial community was characteristic of a saline deep biosphere environment enriched through increased carbon availability, with sulfate-reducing bacteria as the most abundant microorganisms (up to 60 % of total cells). Species belonging to halophilic/halotolerant Proteobacteria and Firmicutes were primarily detected. In Exter Formation rocks, Proteobacteria and Actinobacteria were detected. These data provide an explicit reference to further evaluate environmental changes and community shifts in the reservoir during CO2 storage and provide information for evaluating the storage efficiency and reliability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700