Communities of Cultivable Root Mycobionts of the Seagrass Posidonia oceanica in the Northwest Mediterranean Sea Are Dominated by a Hitherto Undescribed Pleosporalean Dark Septate Endophyte
详细信息    查看全文
  • 作者:Martin Vohník ; Ondřej Borovec ; Miroslav Kolařík
  • 关键词:Seagrasses ; Marine fungi ; Root endophytes ; Dark septate endophytes ; Pleosporales ; Aigialaceae
  • 刊名:Microbial Ecology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:71
  • 期:2
  • 页码:442-451
  • 全文大小:6,375 KB
  • 参考文献:1.Hemminga MA, Duarte CM (2000) Seagrass ecology. Cambridge University Press, CambridgeCrossRef
    2.Hemminga MA, Harrison PG, van Lent F (1991) The balance of nutrient losses and gains in seagrass meadows. Mar Ecol Prog Ser 71:85–96CrossRef
    3.Fourqurean JW, Duarte CM, Kennedy H, Marba N, Holmer M et al (2012) Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5:505–509CrossRef
    4.Green EP, Short FT (2003) World atlas of seagrasses. University of California Press, Berkeley
    5.den Hartog C (1970) Seagrasses of the world. North-Holland Publishing, Amsterdam
    6.den Hartog C, Kuo J (2007) Taxonomy and biogeography of seagrasses. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: Biology, Ecology and Conservation. Springer, Dordrecht
    7.Borum J, Duarte CM, Krause-Jensen D, Greve TM (2004) European seagrasses: an introduction to monitoring and management. A publication by the EU project Monitoring and Managing of European Seagrasses EVK3-CT-2000-00044. ISBN: 87-89143-21-3
    8.Gambi MC, Barbieri F, Bianchi CN (2009) New record of the alien seagrass Halophila stipulacea (Hydrocharitaceae) in the western Mediterranean: a further clue to changing Mediterranean Sea biogeography. Mar Biodivers Rec 2:1–7CrossRef
    9.Arnaud-Haond S, Duarte CM, Diaz-Almela E, Marbá N, Sintes T et al (2012) Implications of extreme life span in clonal organisms: millenary clones in meadows of the threatened seagrass Posidonia oceanica. PLoS One 7:e30454. doi:10.​1371/​journal.​pone.​0030454 PubMedCentral CrossRef PubMed
    10.Peirano A, Bianchi NC (1995) Decline of the seagrass Posidonia oceanica in response to environmental disturbance: a simulation-like approach off Liguria (NW Mediterranean Sea). Proceedings of the 3rd European Marine Biological Symposium, Southampton
    11.Leriche A, Pasqualini V, Boudouresque C-F, Bernard G, Bonhomme P et al (2006) Spatial, temporal and structural variations of a Posidonia oceanica seagrass meadow facing human activities. Aquat Bot 84:287–293CrossRef
    12.Stapel J, Aarts TL, van Duynhoven BHM, de Groot JD, van den Hoogen PHW, Hemminga MA (1996) Nutrient uptake by leaves and roots of the seagrass Thalassia hemprichii in the Spermonde Archipelago, Indonesia. Mar Ecol Prog Ser 134:195–206CrossRef
    13.Nielsen SL, Thingstrup I, Wigand C (1999) Apparent lack of vesicular-arbuscular mycorrhiza (VAM) in the seagrasses Zostera marina L. and Thalassia testudinum Banks ex Konig. Aquat Bot 63:261–266CrossRef
    14.Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London
    15.Kothamasi D, Kothamasi S, Bhattacharyya A, Kuhad RC, Babu CR (2006) Arbuscular mycorrhizae and phosphate solubilising bacteria of the rhizosphere of the mangrove ecosystem of Great Nicobar Island, India. Biol Fertil Soils 42:358–361CrossRef
    16.Welsh AK, Burke DJ, Hamerlynck EP, Hahn D (2010) Seasonal analyses of arbuscular mycorrhizae, nitrogen-fixing bacteria and growth performance of the salt marsh grass Spartina patens. Plant Soil 330:251–266CrossRef
    17.Kohout P, Sýkorová Z, Čtvrtlíková M, Rydlová J, Suda J et al (2012) Surprising spectra of root-associated fungi in submerged aquatic plants. FEMS Microbiol Ecol 80:216–235CrossRef PubMed
    18.Wilson WL (1998) Isolation of endophytes from seagrasses from Bermuda. MSc. thesis, University of New Brunswick. National Library of Canada, Ottawa
    19.Devarajan PT, Suryanarayanan TS, Geetha V (2002) Endophytic fungi associated with the tropical seagrass Halophila ovalis (Hydrocharitaceae). Indian J Mar Sci 31:73–74
    20.Sakayaroj J, Preedanon S, Supaphon O, Jones EBG, Phongpaichit S (2010) Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Divers 42:27–45CrossRef
    21.Mata JL, Cebrián J (2013) Fungal endophytes of the seagrasses Halodule wrightii and Thalassia testudinum in the north central Gulf of Mexico. Bot Mar 56:541–545CrossRef
    22.Vohník M, Borovec O, Župan I, Vondrášek D, Petrtýl M, Sudová R (2015) Anatomically and morphologically unique dark septate endophytic association in the roots of the Mediterranean endemic seagrass Posidonia oceanica. Mycorrhiza. doi:10.​1007/​s00572-015-0642-7
    23.Brundrett M (2006) Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer, Berlin
    24.Durieu de Maisonneuve C, Montagne JFC (1869) Pyrenomycetes Fr. In: Bory de Saint-Vincent J, Durieu de Maisonneuve C (eds) Exploration Scientifique de l´Algérie, Botanique
    25.Kohlmeyer J (1963) Zwei neue Ascomyceten-Gattungen auf Posidonia-Rhizomen. Nova Hedwigia 6:5–13
    26.Cuomo V, Vanzanella F, Fresi E, Cinelli F, Mazzella L (1985) Fungal flora of Posidonia oceanica and its ecological significance. Trans Brit Mycol Soc 84:35–40CrossRef
    27.Kohlmeyer J, Kohlmeyer E (1979) Marine mycology—the higher fungi. Academic Press, New York
    28.Panno L, Bruno M, Voyron S, Anastasi A, Gnavi G et al (2013) Diversity, ecological role and potential biotechnological applications of marine fungi associated to the seagrass Posidonia oceanica. N Biotechnol 30:685–694CrossRef PubMed
    29.Torta L, Lo Piccolo S, Piazza G, Burruano S, Colombo P et al (2015) Lulwoana sp., a dark septate endophyte in roots of Posidonia oceanica (L.) Delile seagrass. Plant Biol 17:505–511CrossRef PubMed
    30.Usuki F, Narisawa K (2007) A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 99:175–184CrossRef PubMed
    31.Tellenbach C, Sieber TN (2012) Do colonization by dark septate endophytes and elevated temperature affect pathogenicity of oomycetes? FEMS Microbiol Ecol 82:157–168CrossRef PubMed
    32.Marx DH (1969) Influence of ectotrophic mycorrhizal fungi on resistance of pine roots to pathogenic infections I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163
    33.Caye G, Bulard C, Meinesz A, Loques F (1992) Dominant role of seawater osmotic pressure on germination in Cymodocea nodosa. Aquat Bot 42:187–193CrossRef
    34.White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis N, Gelfand D, Sninsky J, White T (eds) PCR—protocols and applications—a laboratory manual. Academic Press, New York
    35.Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for Basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118CrossRef PubMed
    36.Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246PubMedCentral PubMed
    37.Vohník M, Sadowsky JJ, Kohout P, Lhotáková Z, Nestby R, Kolařík M (2012) Novel root-fungus symbiosis in Ericaceae: sheathed ericoid mycorrhiza formed by a hitherto undescribed basidiomycete with affinities to Trechisporales. PLoS One 7:e39524. doi:10.​1371/​journal.​pone.​0039524 PubMedCentral CrossRef PubMed
    38.Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Sym Ser 41:95–98
    39.Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCentral CrossRef PubMed
    40.Liu JK, Phookamsak R, Jones EBG, Zhang Y, Ko-Ko TW et al (2011) Astrosphaeriella is polyphyletic, with species in Fissuroma gen. nov., and Neoastrosphaeriella gen. nov. Fungal Divers 51:135–154CrossRef
    41.Katoh K, Toh H (2008) Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinform 9:212. doi:10.​1186/​1471-2105-9-212 CrossRef
    42.Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W et al (2010) New algorithms and methods to estimate Maximum likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRef PubMed
    43.Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentral CrossRef PubMed
    44.Vohník M, Mrnka L, Lukešová T, Bruzone MC, Kouhout P, Fehrer J (2013) The cultivable endophytic community of Norway spruce ectomycorrhizas from microhabitats lacking ericaceous hosts is dominated by ericoid mycorrhizal Meliniomyces variabilis. Fungal Ecol 6:281–292CrossRef
    45.Sieber TN (2002) Fungal root endophytes. In: Waisel Y, Eshel A, Kafkafi (eds) Plant roots—the hidden half, 3rd edn. Marcel Dekker, New York
    46.Park D (1974) Accumulation of fungi by cellulose exposed in a river. Trans Br Mycol Soc 63:437–447CrossRef
    47.Newell SY, Fell JW (1982) Surface sterilization and the active mycoflora of leaves of a seagrass. Bot Mar 25:339–346CrossRef
    48.Shoemaker G, Wyllie-Echeverria S (2013) Occurrence of rhizomal endophytes in three temperate northeastpacific seagrasses. Aquat Bot 111:71–73CrossRef
    49.Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkmann-Kohlmeyer B et al (2009) Molecular systematics of the marine Dothideomycetes. Stud Mycol 64:155–173PubMedCentral CrossRef PubMed
    50.Tomšovský M, Jankovský L (2007) DNA sequence analysis of extraordinary fruiting specimens of Fuscoporia torulosa (Phellinus torulosus) on Pyrus spp. Czech Mycol 59:91–99
    51.Addy HD, Piercey MM, Currah RS (2005) Microfungal endophytes in roots. Can J Bot 83:1–13CrossRef
    52.Vohník M, Albrechtová J (2011) The co-occurrence and morphological continuum between ericoid mycorrhiza and dark septate endophytes in roots of six European Rhododendron species. Folia Geobot 46:373–386CrossRef
    53.Bruzone MC, Fontenla SB, Vohník M (2015) Is the prominent ericoid mycorrhizal fungus Rhizoscyphus ericae absent in the Southern Hemisphere’s Ericaceae? A case study on the diversity of root mycobionts in Gaultheria spp. from northwest Patagonia, Argentina. Mycorrhiza 25:25–40CrossRef PubMed
    54.Porras-Alfaro A, Herrera J, Sinsabaugh RL, Odenbach KJ, Lowrey T, Natvig DO (2008) Novel root fungalconsortium associated with a dominant desert grass. Appl Environ Microbiol 74:1308–1315CrossRef
    55.Knapp DG, Kovács GM, Zajta E, Groenewald JZ, Crous PW (2015) Dark septate endophytic pleosporalean genera fromsemiarid areas. Persoonia 35:87–100CrossRef
    56.Zhang Y, Fournier J, Schoch CL, Crous PW, de Gruyter J et al (2009) Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation. Stud Mycol 64:85–102PubMedCentral CrossRef PubMed
    57.Vohník M, Lukančič S, Bahor E, Regvar M, Vosátka M, Vodnik D (2003) Inoculation of Rhododendron cv. Belle-Heller with two strains of Phialocephala fortinii in two different substrates. Folia Geobot 38:191–200CrossRef
    58.Lukešová T, Kohout P, Větrovský T, Vohník M (2015) The potential of dark septate endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle European forest plants. PLoS One 10:e0124752. doi:10.​1371/​journal.​pone.​012475259 PubMedCentral CrossRef PubMed
    59.Vohník M, Burdíková Z, Albrechtová J, Vosátka M (2009) Testate amoebae (Arcellinida & Euglyphida) vs. ericoid mycorrhizal and DSE fungi: a possible novel interaction in the mycorrhizosphere of ericaceous plants? Microb Ecol 57:203–214CrossRef PubMed
    60.Vohník M, Burdíková Z, Vyhnal A, Koukol O (2011) Interactions between testate amoebae and saprotrophic microfungi in a Scots pine litter microcosm. Microb Ecol 61:660–668CrossRef PubMed
  • 作者单位:Martin Vohník (1) (2)
    Ondřej Borovec (1) (2)
    Miroslav Kolařík (3)

    1. Department of Mycorrhizal Symbioses, Institute of Botany ASCR, Lesní 322, Průhonice, 25243, Czech Republic
    2. Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, Prague, 12843, Czech Republic
    3. Laboratory of Genetics, Physiology and Bioengineering of Fungi, Institute of Microbiology ASCR, Vídeňská 1083, Prague, 14200, Czech Republic
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbiology
    Ecology
    Geoecology and Natural Processes
    Nature Conservation
  • 出版者:Springer New York
  • ISSN:1432-184X
文摘
Seagrasses, a small group of submerged marine macrophytes, were reported to lack mycorrhizae, i.e., the root-fungus symbioses most terrestrial plants use for nutrient uptake. On the other hand, several authors detected fungal endophytes in seagrass leaves, shoots, rhizomes, and roots, and an anatomically and morphologically unique dark septate endophytic (DSE) association has been recently described in the roots of the Mediterranean seagrass Posidonia oceanica. Nevertheless, the global diversity of seagrass mycobionts is not well understood, and it remains unclear what fungus forms the DSE association in P. oceanica roots. We isolated and determined P. oceanica root mycobionts from 11 localities in the northwest Mediterranean Sea with documented presence of the DSE association and compared our results with recent literature. The mycobiont communities were low in diversity (only three species), were dominated by a single yet unreported marine fungal species (ca. 90 % of the total 177 isolates), and lacked common terrestrial and freshwater root mycobionts. Our phylogenetic analysis suggests that the dominating species represents a new monotypic lineage within the recently described Aigialaceae family (Pleosporales, Ascomycota), probably representing a new genus. Most of its examined colonies developed from intracellular microsclerotia occupying host hypodermis and resembling microsclerotia of terrestrial DSE fungi. Biological significance of this hitherto overlooked seagrass root mycobiont remains obscure, but its presence across the NW Mediterranean Sea and apparent root intracellular lifestyle indicate an intriguing symbiotic relationship with the dominant Mediterranean seagrass. Our microscopic observations suggest that it may form the DSE association recently described in P. oceanica roots. Keywords Seagrasses Marine fungi Root endophytes Dark septate endophytes Pleosporales Aigialaceae

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700