Effect of multiwalled carbon nanotubes on UASB microbial consortium
详细信息    查看全文
  • 作者:Tushar Yadav ; Alka A. Mungray…
  • 关键词:Nanotoxicity ; Multiwalled carbon nanotubes ; Extracellular polymeric substances (EPS) ; Volatile fatty acids (VFA) ; UASB sludge
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:23
  • 期:5
  • 页码:4063-4072
  • 全文大小:1,843 KB
  • 参考文献:Abbasi T, Abbasi SA (2012) Formation and impact of granules in fostering clean energy production and wastewater treatment in upflow anaerobic sludge blanket (UASB) reactors. Renew Sustain Energy Rev 16:1696–1708CrossRef
    Banyay M, Sarkar M, Graslund A (2003) A library of IR bands of nucleic acids in solution. Biophys Chem 104:477–488CrossRef
    Brar SK, Verma M, Tyagi RD, Surampalli RY (2010) Nanoparticles in wastewater and wastewater sludge-evidences and impacts. Waste Manag 30:504–520CrossRef
    Chen CZS, Cooper SL (2002) Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23:3359–3368CrossRef
    Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064CrossRef
    Chung H, Son Y, Yoon TK, Kim S, Kim W (2011) The effect of multi-walled carbon nanotubes on soil microbial activity. Ecotoxicol Environ Saf 74:569–575CrossRef
    De Ibarra YS, Gaitero JJ, Erkizia E, Campillo I (2006) Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions. Physica Status solidi (a) 203:1076–1081CrossRef
    Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRef
    Garcia A, Delgado L, Tora JA, Casals E, Gonzalez E, Puntes V, Font X, Carrera J, Sanchez A (2012) Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. J Hazard Mater 199–200:64–72CrossRef
    Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222CrossRef
    Gottschalk F, Sun T, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300CrossRef
    Guibaud G, Comte S, Bordas F, Dupuy S, Baudu M (2005) Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere 59:629–638CrossRef
    Gupta VK, Saleh TA (2013) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene—an overview. Environ Sci Pollut R 20(5):2828–2843CrossRef
    Hai R, Wang Y, Wang X, Du Z, Li Y (2014) Impacts of multiwalled carbon nanotubes on nutrient removal from wastewater and bacterial community structure in activated sludge. PLoS ONE 9(9):e107345. doi:10.​1371/​journal.​pone.​0107345 CrossRef
    Hou J, Miao L, Wang C, Wang P, Ao Y, Lv B (2014) Effect of CuO nanoparticles on the production and composition of extracellular polymeric substances and physicochemical stability of activated sludge flocs. Bioresour Technol. doi:10.​1016/​j.​biortech.​2014.​11.​020
    Hyung H, Fortner JD, Hughes JB, Kim JH (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41(1):179–184CrossRef
    IRP, Innovative Research and Products (2011) Inc. Production and applications of carbon nanotubes, carbon nanofibers, fullerenes, graphene, and nanodiamonds: A Global Technology Survey and Market Analysis, ET-113; p 531
    Jaisi DP, Saleh NB, Blake RE, Elimelech M (2008) Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility. Environ Sci Technol 42(22):8317–8323CrossRef
    Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YL, Guo XB (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383CrossRef
    Joseph T, Morrison M (2006) Nanotechnology in Agriculture and Food, Institute of Nanotechnology. www.​nanoforum.​org , (access 01/13/2012)
    Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17):8670–8673CrossRef
    Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008a) Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24(13):6409–6413CrossRef
    Kang S, Mauter SM, Elimelech M (2008b) Physiochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ Sci Technol 42:7528–7534CrossRef
    Kang S, Mauter MS, Elimelech M (2009) Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ Sci Technol 43:2648–2653CrossRef
    Kannepalli S, Fennell DE, Huang W (2008) Effect of double walled carbon nanotubes on a TCE-dechlorinating culture. The 236th ACS National Meeting, Philadelphia, PA, August 17–21, 2008
    Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Rad Biol Med 51:1872–1881CrossRef
    Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36(3):189–217CrossRef
    Latif MA, Ghufran R, Wahid ZA, Ahmad A (2011) Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters. Water Res 45(16):4683–4699CrossRef
    Lee WJ, Maiti UN, Lee JM, Lim J, Han TH, Kim SO (2014) Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications. Chem Commun 50:6818–6830CrossRef
    Li LL, Tong ZH, Fang CY, Chu J, Yu HQ (2015) Response of anaerobic granular sludge to single-wall carbon nanotube exposure. Water Res 70:1–8CrossRef
    Liu H, Fang HHP (2002) Extraction of extracellular polymeric substances (EPS) of sludges. J Biotechnol 95:249–256CrossRef
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin-phenol reagent. J Biol Chem 193:265–275
    Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899CrossRef
    Luongo LA, Zhang X (2010) Toxicity of carbon nanotubes to the activated sludge process. J Hazard Mater 178:356–362CrossRef
    Mamba G, Mbianda XY, Mishra AK (2014) Gadolinium nanoparticle-decorated multiwalled carbon nanotube/titania nanocomposites for degradation of methylene blue in water under simulated solar light. Environ Sci Pollut R 21(8):5597–5609CrossRef
    Mann EE, Rice KC, Boles BR, Endres JL, Ranjit D, Chandramohan L, Tsang LH, Smeltzer MS, Horswill AR, Bayles KW (2009) Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS ONE 4(6):e5822. doi:10.​1371/​journal.​pone.​0005822 CrossRef
    Montgomery HAC, Dymock JF, Thom NS (1962) The rapid colorimetric determination of organic acids and their salts in sewage-sludge liquor. Analyst 87:949–955CrossRef
    Mu H, Zheng X, Chen Y, Chen H, Liu K (2012) Response of anaerobic granular sludge to a shock load of zinc oxide nanoparticles during biological wastewater treatment. Environ Sci Technol 46:5997–6003CrossRef
    Mueller N, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 2008(42):4447–4453CrossRef
    Musee N, Thwala M, Nota N (2011) The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants. J Environ Monit 13:1164–1183CrossRef
    Pammi M, Liang R, Hicks J, Mistretta TA, Versalovic J (2013) Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans. BMC Microbiol 13:257CrossRef
    Pasquini LM, Sekol RC, Taylor AD, Pfefferle LD, Zimmerman JB (2013) Realizing comparable oxidative and cytotoxic potential of single- and multiwalled carbon nanotubes through annealing. Environ Sci Technol 47(15):8775–8783
    Pekin G, Haskok S, Sargın S, Gezgin Y, Eltem R, Ikizoglu E, Azbar N, Sukan FV (2010) Anaerobic digestion o f Aegean olive mill effluents with and without pretreatment. J Chem Technol Biotechnol 85:976–982CrossRef
    Pereira MM, Mouton L, Yepremian C, Coute A, Lo J, Marconcini JM, Ladeira LO, Raposo NRB, Brandao HM, Brayner R (2014) Ecotoxicological effects of carbon nanotubes and cellulose nanofibers in Chlorella vulgaris. J Nanobiotechnol 12:15CrossRef
    Petersen EJ, Zhang L, Mattison NT, O'Carroll DM, Whelton AJ, Uddin N et al (2011) Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ Sci Technol 45(23):9837–9856CrossRef
    Rodrigues DF, Jaisi DP, Elimelech M (2013) Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: implications for nutrient cycling in soil. Environ Sci Technol 47:625–633CrossRef
    Siedlecka EM, Kumirska J, Ossowski T, Glamowski P, Gołębiowski M, Gajdus J, Kaczyński Z, Stepnowski P (2008) Determination of volatile fatty acids in environmental aqueous samples. Pol J Environ Stud 17(3):351–356
    Sobolev K, Gutierrez MF (2005) How nanotechnology can change the concrete world. Am Ceram Soc Bull 84:16–19
    Thomas VC, Thurlow LR, Boyle D, Hancock LE (2008) Regulation of autolysis dependent eDNA release by Enterococcus faecalis extracellular proteases influences biofilm development. J Bacteriol 190(16):5690–5698CrossRef
    Wingender J, Neu TR, Flemming HC (1999) Microbial extracellular polymeric substances: characterization, structures and function. Springer, BerlinCrossRef
    Yang S, Li X (2009) Influences of extracellular polymeric substances (EPS) on the characteristics of activated sludge under non-steady-state conditions. Process Biochem 44:91–96CrossRef
    Yenigun O, Kizilgun F, Yilmazer G (1996) Inhibition effects of zinc and copper on volatile fatty acid production during anaerobic digestion. Environ Technol 17(11):1269–1274CrossRef
    Young YF, Lee HJ, Shen YS, Tseng SH, Lee CY, Tai NH, Chang HY (2012) Toxicity mechanism of carbon nanotubes on Escherichia coli. Mater Chem Phys 134:279–286CrossRef
    Zardini HZ, Davarpanah M, Shanbedi M, Amiri A, Maghrebi M, Ebrahimi L (2014) Microbial toxicity of ethanolamines-multiwalled carbon nanotubes. J Biomed Mater Res A 102:1774–1781CrossRef
    Zhang W (2014) Nanoparticle aggregation: principles and modeling. Adv Exp Med Biol 811:19–43. doi:10.​1007/​978-94-017-8739-0_​2 CrossRef
  • 作者单位:Tushar Yadav (1)
    Alka A. Mungray (1)
    Arvind K. Mungray (1)

    1. Chemical Engineering Department, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat, 395007, Gujarat, India
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Industrial Pollution Prevention
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7499
文摘
The continuous rise in production and applications of carbon nanotubes (CNTs) has grown a concern about their fate and toxicity in the environment. After use, these nanomaterials pass through sewage and accumulate in wastewater treatment plants. Since, such plants rely on biological degradation of wastes; their activity may decrease due to the presence of CNTs. This study investigated the effect of multiwalled carbon nanotubes (MWCNTs) on upflow anaerobic sludge blanket (UASB) microbial activity. The toxic effect on microbial viability, extracellular polymeric substances (EPS), volatile fatty acids (VFA), and biogas generation was determined. The reduction in a colony-forming unit (CFU) was 29 and 58 % in 1 and 100 mg/L test samples, respectively, as compared to control. The volatile fatty acids and biogas production was also found reduced. The scanning electron microscopy (SEM) and fluorescent microscopy images confirmed that the MWCNT mediated microbial cell damage. This damage caused the increase in EPS carbohydrate, protein, and DNA concentration. Fourier transform infrared (FTIR) spectroscopy results supported the alterations in sludge EPS due to MWCNT. Our observations offer a new insight to understand the nanotoxic effect of MWCNTs on UASB microflora in a complex environment system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700