Rapid Methods for Quality Assurance of Foods: the Next Decade with Polymerase Chain Reaction (PCR)-Based Food Monitoring
详细信息    查看全文
  • 作者:D. De Medici (1)
    T. Kuchta (2)
    R. Knutsson (3)
    A. Angelov (4)
    B. Auricchio (1)
    M. Barbanera (5)
    C. Diaz-Amigo (6)
    A. Fiore (1)
    E. Kudirkiene (7)
    A. Hohl (8)
    D. Horvatek Tomic (9)
    V. Gotcheva (4)
    B. Popping (6)
    E. Prukner-Radovcic (9)
    S. Scaramaglia (5)
    P. Siekel (2)
    K. A. To (10)
    M. Wagner (11)

    1. Department of Veterinary Public Health and Food Safety
    ; Istituto Superiore di Sanit脿 ; Viale Regina Elena 299 ; 00161 ; Rome ; Italy
    2. Department of Microbiology and Molecular Biology
    ; Food Research Institute ; Priemyseln谩 4 ; P. O. Box 25 ; Bratislava ; 82475 26 ; Slovakia
    3. Security Department
    ; SVA National Veterinary Institute ; 751 89 ; Uppsala ; Sweden
    4. Department of Biotechnology
    ; University of Food Technologies ; 26 Maritza Blvd ; 4002 ; Plovdiv ; Bulgaria
    5. Laboratorio Coop Italia
    ; 40033 ; Casalecchio di Reno ; Bologna ; Italy
    6. Eurofins CTC GmbH
    ; Stenzelring 14b ; 21107 ; Hamburg ; Germany
    7. Department of Food Safety and Quality
    ; Lithuanian University of Health Sciences ; Veterinary Academy Til啪臈s Str. 18 ; LT-47181 ; Kaunas ; Lithuania
    8. Department of Food Science and Technology
    ; Institute of Food Science ; University of Natural Resources and Life Sciences ; Muthgasse 18 ; Vienna ; Austria
    9. Department of Poultry Diseases with Clinic
    ; Faculty of Veterinary Medicine ; University of Zagreb ; Heinzelova 55 ; 10000 ; Zagreb ; Croatia
    10. School of Biotechnology and Food Technology
    ; Hanoi University of Science and Technology ; No. 1 ; Dai Co Viet ; Hanoi ; Vietnam
    11. Department for Farm Animals and Veterinary Public Health
    ; Institute for Milk Hygiene ; Milk Technology and Food Science ; University for Veterinary Medicine ; Veterin盲rplatz 1 ; 1210 ; Vienna ; Austria
  • 关键词:Food safety ; Rapid methods ; Quality control ; PCR
  • 刊名:Food Analytical Methods
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:8
  • 期:2
  • 页码:255-271
  • 全文大小:601 KB
  • 参考文献:1. Abdulmawjood A, Bulte M, Cook N, Roth S, Schonenbrucher H, Hoorfar J (2003) Toward an international standard for PCR-based detection of / Escherichia coli O157. Part 1. Assay development and multi-center validation. J Microbiol Methods 55(3):775鈥?86
    2. Abdulmawjood A, Bulte M, Roth S, Schonenbrucher H, Cook N, D鈥橝gostino M, Burkhard M, Jordan K, Pelkonen S, Hoorfar J (2004) Toward an international standard for PCR-based detection of foodborne / Escherichia coli O157: validation of the PCR-based method in a multicenter interlaboratory trial. J AOAC Int 87(4):856鈥?60
    3. Amagliani G, Petruzzelli A, Omiccioli E, Tonucci F, Magnani M, Brandi G (2012) Microbiological surveillance of a bovine raw milk farm through multiplex real-time PCR. Foodborne Pathog Dis 9(5):406鈥?11. doi:10.1089/fpd.2011.1041
    4. Anonymous (2010) Moniqa project- Executive summary 2010. http://www.moniqa.eu/sites/moniqa.eu/files/pagefiles/exec_glossy_10_lr.pdf
    5. Aprodu I, Walcher G, Schelin J, Hein I, Norling B, Radstrom P, Nicolau A, Wagner M (2011) Advanced sample preparation for the molecular quantification of / Staphylococcus aureus in artificially and naturally contaminated milk. Int J Food Microbiol 145(Suppl 1):S61鈥揝65. doi:10.1016/j.ijfoodmicro.2010.09.018
    6. Bidawid S, Farber JM, Sattar SA (2000) Rapid concentration and detection of hepatitis A virus from lettuce and strawberries. J Virol Methods 88(2):175鈥?85
    7. Birch L, Dawson CE, Cornett JH, Keer JT (2001) A comparison of nucleic acid amplification techniques for the assessment of bacterial viability. Lett Appl Microbiol 33(4):296鈥?01
    8. Brehm-Stecher B, Young C, Jaykus LA, Tortorello ML (2009) Sample preparation: the forgotten beginning. J Food Prot 72(8):1774鈥?789
    9. Brezna B, Hudecova L, Kuchta T (2006) Detection of pea in food by real-time polymerase chain reaction (PCR). Eur Food Res Technol 222:600鈥?03
    10. Bustin SA (2010) Why the need for qPCR publication guidelines?鈥攖he case for MIQE. Methods 50(4):217鈥?26. doi:10.1016/j.ymeth.2009.12.006
    11. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611鈥?22. doi:10.1373/clinchem.2008.112797
    12. Butot S, Putallaz T, Croquet C, Lamothe G, Meyer R, Joosten H, Sanchez G (2007a) Attachment of enteric viruses to bottles. Appl Environ Microbiol 73(16):5104鈥?110. doi:10.1128/AEM.00450-07
    13. Butot S, Putallaz T, Sanchez G (2007b) Procedure for rapid concentration and detection of enteric viruses from berries and vegetables. Appl Environ Microbiol 73(1):186鈥?92. doi:10.1128/AEM.01248-06
    14. Butot S, Patallaz T, Sanchez G (2013) Improvement of procedure for HAV detection in bottled water. Food Anal Methods 6:270鈥?73
    15. Chancellor DD, Tyagi S, Bazaco MC, Bacvinskas S, Chancellor MB, Dato VM, de Miguel F (2006) Green onions: potential mechanism for hepatitis A contamination. J Food Prot 69(6):1468鈥?472
    16. CodexAlimentarius (2012) Proposed draft revision of the principles for the establishment and application of microbiological criteria for foods. FAO/OMS, Rome
    17. Costafreda MI, Bosch A, Pinto RM (2006) Development, evaluation, and standardization of a real-time TaqMan reverse transcription-PCR assay for quantification of hepatitis A virus in clinical and shellfish samples. Appl Environ Microbiol 72(6):3846鈥?855. doi:10.1128/AEM.02660-05
    18. Coudray-Meunier C, Fraisse A, Martin-Latil S, Guillier L, Perelle S (2013) Discrimination of infectious hepatitis A virus and rotavirus by combining dyes and surfactants with RT-qPCR. BMC Microbiol 13:216. doi:10.1186/1471-2180-13-216
    19. Coutard F, Pommepuy M, Loaec S, Hervio-Heath D (2005) mRNA detection by reverse transcription-PCR for monitoring viability and potential virulence in a pathogenic strain of / Vibrio parahaemolyticus in viable but nonculturable state. J Appl Microbiol 98(4):951鈥?61. doi:10.1111/j.1365-2672.2005.02534.x
    20. Croci L, Dubois E, Cook N, De Medici D, Schultz AC, China B, Rutjes SA, Hoorfar H, Van der Poel WH (2008) Current methods for extraction and concentration of enteric viruses from fresh fruit and vegetables: towards international standards. Food Anal Methods 1:73鈥?4
    21. D鈥橝gostino M, Wagner M, Vazquez-Boland JA, Kuchta T, Karpiskova R, Hoorfar J, Novella S, Scortti M, Ellison J, Murray A, Fernandes I, Kuhn M, Pazlarova J, Heuvelink A, Cook N (2004) A validated PCR-based method to detect / Listeria monocytogenes using raw milk as a food model鈥攖owards an international standard. J Food Prot 67(8):1646鈥?655
    22. D鈥橴rso OF, Poltronieri P, Marsigliante S, Storelli C, Hernandez M, Rodriguez-Lazaro D (2009) A filtration-based real-time PCR method for the quantitative detection of viable / Salmonella enterica and / Listeria monocytogenes in food samples. Food Microbiol 26(3):311鈥?16. doi:10.1016/j.fm.2008.12.006
    23. De Medici D, Croci L, Di Pasquale S, Fiore A, Toti L (2001) Detecting the presence of infectious hepatitis A virus in molluscs positive to RT-nested-PCR. Lett Appl Microbiol 33(5):362鈥?66
    24. De Medici D, Anniballi F, Wyatt GM, Lindstrom M, Messelhausser U, Aldus CF, Delibato E, Korkeala H, Peck MW, Fenicia L (2009) Multiplex PCR for detection of botulinum neurotoxin-producing clostridia in clinical, food, and environmental samples. Appl Environ Microbiol 75(20):6457鈥?461. doi:10.1128/AEM.00805-09
    25. Delibato E, Rodriguez Lazaro D, Gianfranceschi M, De Cesare A, Comin D, Gattuso A, Hernandez M, Sonnessa M, Pasquali F, Sreter-Lancz Z, Saiz-Abajo MJ, Perez-De-Juan J, Butron J, Prukner-Radovcic E, Horvatek Tomic D, Johannessen GS, Jakociune D, Olsen JE, Chemaly M, Le Gall F, Gonzalez-Garcia P, Lettini AA, Lukac M, Quesne S, Zampieron C, De Santis P, Lovari S, Bertasi B, Pavoni E, Proroga YT, Capuano F, Manfreda G, De Medici D (2014) European validation of real-time PCR method for detection of / Salmonella spp. in pork meat. Int J Food Microbiol. doi:10.1016/j.ijfoodmicro.2014.01.005
    26. Di Pasquale S, Paniconi M, De Medici D, Suffredini E, Croci L (2009) Duplex real time PCR for the detection of hepatitis A virus in shellfish using Feline Calicivirus as a process control. J Virol Methods 163(1):96鈥?00. doi:10.1016/j.jviromet.2009.09.003
    27. Di Pasquale S, Paniconi M, Auricchio B, Orefice L, Schultz AC, De Medici D (2010) Comparison of different concentration methods for the detection of hepatitis A virus and calicivirus from bottled natural mineral waters. J Virol Methods 165(1):57鈥?3. doi:10.1016/j.jviromet.2010.01.003
    28. Duizer E, Schwab KJ, Neill FH, Atmar RL, Koopmans MP, Estes MK (2004) Laboratory efforts to cultivate noroviruses. J Gen Virol 85(Pt 1):79鈥?7
    29. EFSA (2011) Scientific opinion on an update on the present knowledge on the occurrence and control of foodborne viruses. EFSA J 9(7):2190
    30. El-Senousy WM, Costafreda MI, Pinto RM, Bosch A (2013) Method validation for norovirus detection in naturally contaminated irrigation water and fresh produce. Int J Food Microbiol 167(1):74鈥?9. doi:10.1016/j.ijfoodmicro.2013.06.023
    31. Fach P, Micheau P, Mazuet C, Perelle S, Popoff M (2009) Development of real-time PCR tests for detecting botulinum neurotoxins A, B, E, F producing / Clostridium botulinum, / Clostridium baratii and / Clostridium butyricum. J Appl Microbiol 107(2):465鈥?73. doi:10.1111/j.1365-2672.2009.04215.x
    32. Fenicia L, Fach P, van Rotterdam BJ, Anniballi F, Segerman B, Auricchio B, Delibato E, Hamidjaja RA, Wielinga PR, Woudstra C, Agren J, De Medici D, Knutsson R (2011) Towards an international standard for detection and typing botulinum neurotoxin-producing Clostridia types A, B, E and F in food, feed and environmental samples: a European ring trial study to evaluate a real-time PCR assay. Int J Food Microbiol 145(Suppl 1):S152鈥揝157. doi:10.1016/j.ijfoodmicro.2011.02.001
    33. Flekna G, Stefanic P, Wagner M, Smulders FJ, Mozina SS, Hein I (2007) Insufficient differentiation of live and dead / Campylobacter jejuni and / Listeria monocytogenes cells by ethidium monoazide (EMA) compromises EMA/real-time PCR. Res Microbiol 158(5):405鈥?12. doi:10.1016/j.resmic.2007.02.008
    34. Fricker M, Messelhausser U, Busch U, Scherer S, Ehling-Schulz M (2007) Diagnostic real-time PCR assays for the detection of emetic / Bacillus cereus strains in foods and recent food-borne outbreaks. Appl Environ Microbiol 73(6):1892鈥?898. doi:10.1128/AEM.02219-06
    35. Fukushima H, Katsube K, Hata Y, Kishi R, Fujiwara S (2007) Rapid separation and concentration of food-borne pathogens in food samples prior to quantification by viable-cell counting and real-time PCR. Appl Environ Microbiol 73(1):92鈥?00. doi:10.1128/AEM.01772-06
    36. Gianfranceschi MV, Rodriguez-Lazaro D, Hernandez M, Gonzalez-Garcia P, Comin D, Gattuso A, Delibato E, Sonnessa M, Pasquali F, Prencipe V, Sreter-Lancz Z, Saiz-Abajo MJ, Perez-De-Juan J, Butron J, Kozacinski L, Tomic DH, Zdolec N, Johannessen GS, Jakociune D, Olsen JE, De Santis P, Lovari S, Bertasi B, Pavoni E, Paiusco A, De Cesare A, Manfreda G, De Medici D (2014) European validation of a real-time PCR-based method for detection of / Listeria monocytogenes in soft cheese. Int J Food Microbiol. doi:10.1016/j.ijfoodmicro.2013.12.021
    37. Gonzalez-Escalona N, Hammack TS, Russell M, Jacobson AP, De Jesus AJ, Brown EW, Lampel KA (2009) Detection of live / Salmonella sp. cells in produce by a TaqMan-based quantitative reverse transcriptase real-time PCR targeting invA mRNA. Appl Environ Microbiol 75(11):3714鈥?720. doi:10.1128/AEM.02686-08
    38. Graiver DA, Saunders SE, Topliff CL, Kelling CL, Bartelt-Hunt SL (2010) Ethidium monoazide does not inhibit RT-PCR amplification of nonviable avian influenza RNA. J Virol Methods 164(1鈥?):51鈥?4. doi:10.1016/j.jviromet.2009.11.024
    39. Greisen K, Loeffelholz M, Purohit A, Leong D (1994) PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J Clin Microbiol 32(2):335鈥?51
    40. Havelaar AH, Brul S, de Jong A, de Jonge R, Zwietering MH, Ter Kuile BH (2010) Future challenges to microbial food safety. Int J Food Microbiol 139(Suppl 1):S79鈥揝94. doi:10.1016/j.ijfoodmicro.2009.10.015
    41. Hellyer TJ, DesJardin LE, Teixeira L, Perkins MD, Cave MD, Eisenach KD (1999) Detection of viable / Mycobacterium tuberculosis by reverse transcriptase-strand displacement amplification of mRNA. J Clin Microbiol 37(3):518鈥?23
    42. Hofstra H, van der Vossen JM, van der Plas J (1994) Microbes in food processing technology. FEMS Microbiol Rev 15(2鈥?):175鈥?83
    43. Hoorfar J (2011) Rapid detection, characterization, and enumeration of foodborne pathogens. APMIS Suppl 133:1鈥?4. doi:10.1111/j.1600-0463.2011.02767.x
    44. Hoorfar J, Malorny B, Abdulmawjood A, Cook N, Wagner M, Fach P (2004a) Practical considerations in design of internal amplification controls for diagnostic PCR assays. J Clin Microbiol 42(5):1863鈥?868
    45. Hoorfar J, Wolffs P, Radstrom P (2004b) Diagnostic PCR: validation and sample preparation are two sides of the same coin. APMIS 112(11鈥?2):808鈥?14
    46. Huang P, Farkas T, Zhong W, Tan M, Thornton S, Morrow AL, Jiang X (2005) Norovirus and histo-blood group antigens: demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns. J Virol 79(11):6714鈥?722. doi:10.1128/JVI.79.11.6714-6722.2005
    47. Hyeon JY, Chon JW, Park C, Lee JB, Choi IS, Kim MS, Seo KH (2011) Rapid detection method for hepatitis A virus from lettuce by a combination of filtration and integrated cell culture-real-time reverse transcription PCR. J Food Prot 74(10):1756鈥?761. doi:10.4315/0362-028X.JFP-11-155
    48. ISO/IEC (2004) ISO/IEC Guide 2:2004, Standardization and related activities鈥攇eneral vocabulary
    49. Jakociune D, Pasquali F, da Silva CS, Lofstrom C, Hoorfar J, Klein G, Manfreda G, Olsen JE (2013) Enumeration of salmonellae in table eggs, pasteurized egg products, and egg-containing dishes by using quantitative real-time PCR. Appl Environ Microbiol 80(5):1616鈥?622. doi:10.1128/AEM.03360-13
    50. Josefsen MH, Lambertz ST, Jensen S, Hoorfar J (2003) Food-PCR. Validation and standardization of diagnostic PCR for detection of / Yersinia enterocolitica and other foodborne pathogens. Adv Exp Med Biol 529:443鈥?49. doi:10.1007/0-306-48416-1_88
    51. Josefsen MH, Cook N, D鈥橝gostino M, Hansen F, Wagner M, Demnerova K, Heuvelink AE, Tassios PT, Lindmark H, Kmet V, Barbanera M, Fach P, Loncarevic S, Hoorfar J (2004) Validation of a PCR-based method for detection of food-borne thermotolerant campylobacters in a multicenter collaborative trial. Appl Environ Microbiol 70(7):4379鈥?383. doi:10.1128/AEM.70.7.4379-4383.2004
    52. Josefsen MH, Lofstrom C, Hansen TB, Christensen LS, Olsen JE, Hoorfar J (2010) Rapid quantification of viable / Campylobacter bacteria on chicken carcasses, using real-time PCR and propidium monoazide treatment, as a tool for quantitative risk assessment. Appl Environ Microbiol 76(15):5097鈥?104. doi:10.1128/AEM.00411-10
    53. Jothikumar N, Lowther JA, Henshilwood K, Lees DN, Hill VR, Vinje J (2005) Rapid and sensitive detection of noroviruses by using TaqMan-based one-step reverse transcription-PCR assays and application to naturally contaminated shellfish samples. Appl Environ Microbiol 71(4):1870鈥?875. doi:10.1128/AEM.71.4.1870-1875.2005
    54. Kim SY, Ko G (2012) Using propidium monoazide to distinguish between viable and nonviable bacteria, MS2 and murine norovirus. Lett Appl Microbiol 55(3):182鈥?88. doi:10.1111/j.1472-765X.2012.03276.x
    55. Kim K, Katayama H, Kitajima M, Tohya Y, Ohgaki S (2011) Development of a real-time RT-PCR assay combined with ethidium monoazide treatment for RNA viruses and its application to detect viral RNA after heat exposure. Water Sci Technol 63(3):502鈥?07. doi:10.2166/wst.2011.249
    56. Knight A, Li D, Uyttendaele M, Jaykus LA (2012) A critical review of methods for detecting human noroviruses and predicting their infectivity. Crit Rev Microbiol. doi:10.3109/1040841X.2012.709820
    57. Knutsson R, van Rotterdam B, Fach P, De Medici D, Fricker M, Lofstrom C, Agren J, Segerman B, Andersson G, Wielinga P, Fenicia L, Skiby J, Schultz AC, Ehling-Schulz M (2011) Accidental and deliberate microbiological contamination in the feed and food chains鈥攈ow biotraceability may improve the response to bioterrorism. Int J Food Microbiol 145(Suppl 1):S123鈥揝128. doi:10.1016/j.ijfoodmicro.2010.10.011
    58. Kobayashi S, Natori K, Takeda N, Sakae K (2004) Immunomagnetic capture rt-PCR for detection of norovirus from foods implicated in a foodborne outbreak. Microbiol Immunol 48(3):201鈥?04
    59. Kobayashi H, Oethinger M, Tuohy MJ, Procop GW, Hall GS, Bauer TW (2009) Limiting false-positive polymerase chain reaction results: detection of DNA and mRNA to differentiate viable from dead bacteria. Diagn Microbiol Infect Dis 64(4):445鈥?47. doi:10.1016/j.diagmicrobio.2009.04.004
    60. Konduru K, Kaplan GG (2006) Stable growth of wild-type hepatitis A virus in cell culture. J Virol 80(3):1352鈥?360. doi:10.1128/JVI.80.3.1352-1360.2006
    61. Koopmans M, von Bonsdorff CH, Vinje J, de Medici D, Monroe S (2002) Foodborne viruses. FEMS Microbiol Rev 26(2):187鈥?05
    62. Kornacki JL, Johnson JL (2001) Enterobacteriacae, coliform and / Escherichia coli as quality and safety indicators. Chapter 8. In: APHA (ed) Compendium of methods for the microbiological examination, 4th edn. APHA, Washington D.C
    63. Kramer N, Lofstrom C, Vigre H, Hoorfar J, Bunge C, Malorny B (2011) A novel strategy to obtain quantitative data for modelling: combined enrichment and real-time PCR for enumeration of salmonellae from pig carcasses. Int J Food Microbiol 145(Suppl 1):S86鈥揝95. doi:10.1016/j.ijfoodmicro.2010.08.026
    64. Krascsenicsova K, Kaclikova E, Kuchta T (2006) Growth of / Salmonella enterica in model mixed cultures during a two-step enrichment. New Microbiol 29(4):261鈥?67
    65. Kuchta T, Knutsson R, Fiore A, Kudirkiene E, H枚hl A, Horvatek Tomic D, Gotcheva V, P枚pping B, Scaramaglia S, To KA, Wagner M, De Medici D (2014) A decade with nucleic acid-based microbiological methods in safety control of foods. Lett Appl Microbiol. doi:10.1111/lam.12283
    66. Lau HK, Clotilde LM, Lin AP, Hartman GL, Lauzon CR (2012) Comparison of IMS platforms for detecting and recovering / Escherichia coli O157 and / Shigella flexneri in foods. J Lab Autom. doi:10.1177/2211068212468583
    67. Le Guyader F, Loisy F, Atmar RL, Hutson AM, Estes MK, Ruvoen-Clouet N, Pommepuy M, Le Pendu J (2006) Norwalk virus-specific binding to oyster digestive tissues. Emerg Infect Dis 12(6):931鈥?36
    68. Lees D (2010) International standardisation of a method for detection of human pathogenic viruses in molluscan shellfish. Food Anal Method 2010:146鈥?55
    69. Lindstrom M, Keto R, Markkula A, Nevas M, Hielm S, Korkeala H (2001) Multiplex PCR assay for detection and identification of / Clostridium botulinum types A, B, E, and F in food and fecal material. Appl Environ Microbiol 67(12):5694鈥?699. doi:10.1128/AEM.67.12.5694-5699.2001
    70. Liu Y, Wang C, Fung C, Li XF (2010) Quantification of viable but nonculturable / Escherichia coli O157:H7 by targeting the rpoS mRNA. Anal Chem 82(7):2612鈥?615. doi:10.1021/ac1003272
    71. Lofstrom C, Hoorfar J (2012) Validation of an open-formula, diagnostic real-time PCR method for 20-h detection of / Salmonella in animal feeds. Vet Microbiol 158(3鈥?):431鈥?35. doi:10.1016/j.vetmic.2012.02.026
    72. Lombard B, Leclercq A (2009) The role of standardization bodies in the harmonization of analytical methods in food microbiology. In: Barbosa-Canovas G, Mortimer A, Lineback D, Spiess W, Buckle K, Colonna P (eds) Global issues in food science and technology. Elsevier Academic Press, Burlington, pp 177鈥?97
    73. Lubeck PS, Cook N, Wagner M, Fach P, Hoorfar J (2003a) Toward an international standard for PCR-based detection of food-borne thermotolerant / Campylobacters: validation in a multicenter collaborative trial. Appl Environ Microbiol 69(9):5670鈥?672
    74. Lubeck PS, Wolffs P, On SL, Ahrens P, Radstrom P, Hoorfar J (2003b) Toward an international standard for PCR-based detection of food-borne thermotolerant campylobacters: assay development and analytical validation. Appl Environ Microbiol 69(9):5664鈥?669
    75. Malorny B, Tassios PT, Radstrom P, Cook N, Wagner M, Hoorfar J (2003) Standardization of diagnostic PCR for the detection of foodborne pathogens. Int J Food Microbiol 83(1):39鈥?8
    76. Malorny B, Cook N, D鈥橝gostino M, De Medici D, Croci L, Abdulmawjood A, Fach P, Karpiskova R, Aymerich T, Kwaitek K, Hoorfar J (2004) Multicenter validation of PCR-based method for detection of / Salmonella in chicken and pig samples. J AOAC Int 87(4):861鈥?66
    77. Mancusi R, Trevisani M (2014) Enumeration of verocytotoxigenic / Escherichia coli (VTEC) O157 and O26 in milk by quantitative PCR. Int J Food Microbiol. doi:10.1016/j.ijfoodmicro.2014.03.020
    78. Mandal PK, Biswas AK, Choi K, Pal UK (2011) Method for rapid detection of foodborne pathogens: an overview. Am J Food Technol 6:87鈥?02
    79. Manfreda G, De Cesare A (2014) The challenge of defining risk-based metrics to improve food safety: inputs from the BASELINE project. Int J Food Microbiol. doi:10.1016/j.ijfoodmicro.2014.01.013
    80. Mayrl E, Roeder B, Mester P, Wagner M, Rossmanith P (2009) Broad range evaluation of the matrix solubilization (matrix lysis) strategy for direct enumeration of foodborne pathogens by nucleic acids technologies. J Food Prot 72(6):1225鈥?233
    81. Mester P, Wagner M, Rossmanith P (2010a) Biased spectroscopic protein quantification in the presence of ionic liquids. Anal Bioanal Chem 397(5):1763鈥?766. doi:10.1007/s00216-010-3755-z
    82. Mester P, Wagner M, Rossmanith P (2010b) Use of ionic liquid-based extraction for recovery of / Salmonella Typhimurium and / Listeria monocytogenes from food matrices. J Food Prot 73(4):680鈥?87
    83. Minami J, Yoshida K, Soejima T, Yaeshima T, Iwatsuki K (2010) New approach to use ethidium bromide monoazide as an analytical tool. J Appl Microbiol 109(3):900鈥?09. doi:10.1111/j.1365-2672.2010.04716.x
    84. Minami J, Soejima T, Yaeshima T, Iwatsuki K (2012) Direct real-time PCR with ethidium monoazide: a method for the rapid detection of viable / Cronobacter sakazakii in powdered infant formula. J Food Prot 75(9):1572鈥?579. doi:10.4315/0362-028X.JFP-12-015
    85. Morton V, Jean J, Farber J, Mattison K (2009) Detection of noroviruses in ready-to-eat foods by using carbohydrate-coated magnetic beads. Appl Environ Microbiol 75(13):4641鈥?643. doi:10.1128/AEM.00202-09
    86. Nocker A, Camper AK (2009) Novel approaches toward preferential detection of viable cells using nucleic acid amplification techniques. FEMS Microbiol Lett 291(2):137鈥?42. doi:10.1111/j.1574-6968.2008.01429.x
    87. Nocker A, Cheung CY, Camper AK (2006) Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods 67(2):310鈥?20. doi:10.1016/j.mimet.2006.04.015
    88. Nocker A, Sossa-Fernandez P, Burr MD, Camper AK (2007) Use of propidium monoazide for live/dead distinction in microbial ecology. Appl Environ Microbiol 73(16):5111鈥?117. doi:10.1128/AEM.02987-06
    89. Nogva HK, Dromtorp SM, Nissen H, Rudi K (2003) Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5鈥?nuclease PCR. Biotechniques 34(4):804鈥?08, 810, 812-803
    90. Nuanualsuwan S, Cliver DO (2002) Pretreatment to avoid positive RT-PCR results with inactivated viruses. J Virol Methods 104(2):217鈥?25
    91. Nuanualsuwan S, Cliver DO (2003) Capsid functions of inactivated human picornaviruses and feline calicivirus. Appl Environ Microbiol 69(1):350鈥?57
    92. Nuanualsuwan S, Mariam T, Himathongkham S, Cliver DO (2002) Ultraviolet inactivation of feline calicivirus, human enteric viruses and coliphages. Photochem Photobiol 76(4):406鈥?10
    93. Ogorzaly L, Bertrand I, Paris M, Maul A, Gantzer C (2010) Occurrence, survival, and persistence of human adenoviruses and F-specific RNA phages in raw groundwater. Appl Environ Microbiol 76(24):8019鈥?025. doi:10.1128/AEM.00917-10
    94. Ogorzaly L, Bonot S, Moualij BE, Zorzi W, Cauchie HM (2013) Development of a quantitative immunocapture real-time PCR assay for detecting structurally intact adenoviral particles in water. J Virol Methods 194(1鈥?):235鈥?41. doi:10.1016/j.jviromet.2013.07.009
    95. Olsvik O, Popovic T, Skjerve E, Cudjoe KS, Hornes E, Ugelstad J, Uhlen M (1994) Magnetic separation techniques in diagnostic microbiology. Clin Microbiol Rev 7(1):43鈥?4
    96. Papafragkou E, Plante M, Mattison K, Bidawid S, Karthikeyan K, Farber JM, Jaykus LA (2008) Rapid and sensitive detection of hepatitis A virus in representative food matrices. J Virol Methods 147(1):177鈥?87. doi:10.1016/j.jviromet.2007.08.024
    97. Parshionikar S, Laseke I, Fout GS (2010) Use of propidium monoazide in reverse transcriptase PCR to distinguish between infectious and noninfectious enteric viruses in water samples. Appl Environ Microbiol 76(13):4318鈥?326. doi:10.1128/AEM.02800-09
    98. Pavoni E, Consoli M, Suffredini E, Arcangeli G, Serracca L, Battistini R, Rossini I, Croci L, Losio MN (2013) Noroviruses in seafood: a 9-year monitoring in Italy. Foodborne Pathog Dis 10(6):533鈥?39. doi:10.1089/fpd.2012.1399
    99. Perelle S, Cavellini L, Burger C, Blaise-Boisseau S, Hennechart-Collette C, Merle G, Fach P (2009) Use of a robotic RNA purification protocol based on the NucliSens easyMAG for real-time RT-PCR detection of hepatitis A virus in bottled water. J Virol Methods 157(1):80鈥?3. doi:10.1016/j.jviromet.2008.11.022
    100. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36
    101. Postollec F, Falentin H, Pavan S, Combrisson J, Sohier D (2011) Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiol 28(5):848鈥?61. doi:10.1016/j.fm.2011.02.008
    102. Pugniere P, Banzet S, Chaillou T, Mouret C, Peinnequin A (2011) Pitfalls of reverse transcription quantitative polymerase chain reaction standardization: volume-related inhibitors of reverse transcription. Anal Biochem 415(2):151鈥?57. doi:10.1016/j.ab.2011.04.008
    103. Radstrom P, Knutsson R, Wolffs P, Lovenklev M, Lofstrom C (2004) Pre-PCR processing: strategies to generate PCR-compatible samples. Mol Biotechnol 26(2):133鈥?46. doi:10.1385/MB:26:2:133
    104. Radstrom P, Lofstrom C, Lovenklev M, Knutsson R, Wolffs P (2008) Strategies for overcoming PCR inhibition. CSH Protoc 2008:pdb top20
    105. Reichert-Schwillinsky F, Pin C, Dzieciol M, Wagner M, Hein I (2009) Stress- and growth rate-related differences between plate count and real-time PCR data during growth of / Listeria monocytogenes. Appl Environ Microbiol 75(7):2132鈥?138. doi:10.1128/AEM.01796-08
    106. Reynolds KA (2004) Integrated cell culture/PCR for detection of enteric viruses in environmental samples. Methods Mol Biol 268:69鈥?8. doi:10.1385/1-59259-766-1:069
    107. Richards GP (1999) Limitations of molecular biological techniques for assessing the virological safety of foods. J Food Prot 62(6):691鈥?97
    108. Rizzo C, Alfonsi V, Bruni R, Busani L, Ciccaglione A, De Medici D, Di Pasquale S, Equestre M, Escher M, Montano-Remacha M, Scavia G, Taffon S, Carraro V, Franchini S, Natter B, Augschiller M, Tosti M (2014) Central Task Force on Hepatitis A. Ongoing outbreak of hepatitis A in Italy: preliminary report as of 31 May 2013. Euro Surveill 18(27). Available online: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20518
    109. Rodriguez-Lazaro D, Hernandez M (2013) Real-time PCR in food science: introduction. Curr Issues Mol Biol 15(2):25鈥?8
    110. Rodr铆guez-L谩zaro D, Lombard B, Smith H, Rzezutka A, D鈥橝gostino M, Helmuth R, Schroeter A, Malorny B, Miko A, Guerra B, Davison J, Kobilinsky A, Hern谩ndez M, Bertheau Y, Cook N (2007) Trends in analytical methodology in food safety and quality: monitoring microorganisms and genetically modified organisms. Trends Food Sci Technol 18:306鈥?19
    111. Rodriguez-Lazaro D, Cook N, Hernandez M (2013) Real-time PCR in food science: PCR diagnostics. Curr Issues Mol Biol 15(2):39鈥?4
    112. Rodriguez-Lazaro D, Gonzalez-Garc铆a P, Delibato E, De Medici D, Garc铆a-Gimeno RM, Valero A, Hernandez M (2014) Next day / Salmonella spp. detection method based on real-time PCR for meat, dairy and vegetable food products. Int J Food Microbiol. doi:10.1016/j.ijfoodmicro.2014.03.021
    113. Rosenquist H, Bengtsson A, Hansen TB (2007) A collaborative study on a Nordic standard protocol for detection and enumeration of thermotolerant / Campylobacter in food (NMKL 119, 3. Ed., 2007). Int J Food Microbiol 118(2):201鈥?13. doi:10.1016/j.ijfoodmicro.2007.07.037
    114. Rossmanith P, Wagner M (2010) Sample preparation for the detection of foodborne pathogens by molecular biological methods. In: Brul S, Fratamico PM, McMeekin TA (eds) Tracing pathogens in the food chain. Woodhead, Cambridge
    115. Rossmanith P, Wagner M (2011) The challenge to quantify / Listeria monocytogenes鈥攁 model leading to new aspects in molecular biological food pathogen detection. J Appl Microbiol 110(3):605鈥?17. doi:10.1111/j.1365-2672.2010.04915.x
    116. Rossmanith P, Suss B, Wagner M, Hein I (2007) Development of matrix lysis for concentration of gram positive bacteria from food and blood. J Microbiol Methods 69(3):504鈥?11. doi:10.1016/j.mimet.2007.03.003
    117. Rossmanith P, Mester P, Fruhwirth K, Fuchs S, Wagner M (2011) Proof of concept for recombinant cellular controls in quantitative molecular pathogen detection. Appl Environ Microbiol 77(7):2531鈥?533. doi:10.1128/AEM.02601-10
    118. Rudi K, Moen B, Dromtorp SM, Holck AL (2005) Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Appl Environ Microbiol 71(2):1018鈥?024. doi:10.1128/AEM.71.2.1018-1024.2005
    119. Sadovski AY, Fattal B, Goldberg D, Katzenelson E, Shuval HI (1978) High levels of microbial contamination of vegetables irrigated with wastewater by the drip method. Appl Environ Microbiol 36(6):824鈥?30
    120. Sanchez G, Bosch A, Pinto RM (2007) Hepatitis A virus detection in food: current and future prospects. Lett Appl Microbiol 45(1):1鈥?. doi:10.1111/j.1472-765X.2007.02140.x
    121. Sanchez G, Elizaquivel P, Aznar R (2013) Discrimination of infectious hepatitis A viruses by propidium monoazide real-time RT-PCR. Food Environ Virol 4(1):21鈥?5. doi:10.1007/s12560-011-9074-5
    122. Scherer K, M盲de D, Ellerbroek L, Schulenburg J, Johne R, Klein G (2008) Application of a swab sampling method for the detection of norovirus and rotavirus to artificially contaminated food and environmental surfaces. Food Environ Virol 1:42鈥?9
    123. Schoder D, Schmalwieser A, Schauberger G, Kuhn M, Hoorfar J, Wagner M (2003) Physical characteristics of six new thermocyclers. Clin Chem 49(6 Pt 1):960鈥?63
    124. Schultz AC, Perelle S, Di Pasquale S, Kovac K, De Medici D, Fach P, Sommer HM, Hoorfar J (2010) Collaborative validation of a rapid method for efficient virus concentration in bottled water. Int J Food Microbiol 145(Suppl 1):S158鈥揝166. doi:10.1016/j.ijfoodmicro.2010.07.030
    125. Schultz AC, Perelle S, Di Pasquale S, Kovac K, De Medici D, Fach P, Sommer HM, Hoorfar J (2011) Collaborative validation of a rapid method for efficient virus concentration in bottled water. Int J Food Microbiol 145(Suppl 1):S158鈥揝166. doi:10.1016/j.ijfoodmicro.2010.07.030
    126. Shan XC, Wolffs P, Griffiths MW (2005) Rapid and quantitative detection of hepatitis A virus from green onion and strawberry rinses by use of real-time reverse transcription-PCR. Appl Environ Microbiol 71(9):5624鈥?626. doi:10.1128/AEM.71.9.5624-5626.2005
    127. Shields MJ, Hahn KR, Janzen TW, Goji N, Thomas MC, Kingombe CB, Paquet C, Kell AJ, Amoako KK (2012) Immunomagnetic capture of / Bacillus anthracis spores from food. J Food Prot 75(7):1243鈥?248. doi:10.4315/0362-028X.JFP-12-048
    128. Soejima T, Schlitt-Dittrich F, Yoshida S (2011) Polymerase chain reaction amplification length-dependent ethidium monoazide suppression power for heat-killed cells of / Enterobacteriaceae. Anal Biochem 418(1):37鈥?3. doi:10.1016/j.ab.2011.06.027
    129. Stals A, Mathijs E, Baert L, Botteldoorn N, Denayer S, Mauroy A, Scipioni A, Daube G, Dierick K, Herman L, Van Coillie E, Thiry E, Uyttendaele M (2013) Molecular detection and genotyping of noroviruses. Food Environ Virol 4(4):153鈥?67. doi:10.1007/s12560-012-9092-y
    130. Stevens KA, Jaykus LA (2004) Direct detection of bacterial pathogens in representative dairy products using a combined bacterial concentration-PCR approach. J Appl Microbiol 97(6):1115鈥?122. doi:10.1111/j.1365-2672.2004.02393.x
    131. Suffredini E, Lanni L, Arcangeli G, Pepe T, Mazzette R, Ciccaglioni G, Croci L (2014) Qualitative and quantitative assessment of viral contamination in bivalve molluscs harvested in Italy. Int J Food Microbiol. doi:10.1016/j.ijfoodmicro.2014.02.026
    132. Tan M, Jiang X (2005) Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle. Trends Microbiol 13(6):285鈥?93. doi:10.1016/j.tim.2005.04.004
    133. Thisted Lambertz S, Ballagi-Pordany A, Lindqvist R (1998) A mimic as internal standard to monitor PCR analysis of food-borne pathogens. Lett Appl Microbiol 26(1):9鈥?1
    134. Tian P, Mandrell R (2006) Detection of norovirus capsid proteins in faecal and food samples by a real time immuno-PCR method. J Appl Microbiol 100(3):564鈥?74. doi:10.1111/j.1365-2672.2005.02816.x
    135. Tian P, Bates AH, Jensen HM, Mandrell RE (2006) Norovirus binds to blood group A-like antigens in oyster gastrointestinal cells. Lett Appl Microbiol 43(6):645鈥?51. doi:10.1111/j.1472-765X.2006.02010.x
    136. Tu S, Reed S, Gehring A, He Y (2011) Simultaneous detection of / Escherichia coli O157:H7 and / Salmonella Typhimurium: the use of magnetic beads conjugated with multiple capture antibodies. Food Anal Methods 4:357鈥?64
    137. Urbanucci A, Myrmel M, Berg I, von Bonsdorff CH, Maunula L (2009) Potential internalisation of caliciviruses in lettuce. Int J Food Microbiol 135(2):175鈥?78. doi:10.1016/j.ijfoodmicro.2009.07.036
    138. Wilde J, Eiden J, Yolken R (1990) Removal of inhibitory substances from human fecal specimens for detection of group A rotaviruses by reverse transcriptase and polymerase chain reactions. J Clin Microbiol 28(6):1300鈥?307
    139. Wolffs P, Knutsson R, Sjoback R, Radstrom P (2001) PNA-based light-up probes for real-time detection of sequence-specific PCR products. Biotechniques 31(4):766, 769鈥?71
    140. Wolffs P, Knutsson R, Norling B, Radstrom P (2004) Rapid quantification of / Yersinia enterocolitica in pork samples by a novel sample preparation method, flotation, prior to real-time PCR. J Clin Microbiol 42(3):1042鈥?047
    141. Wolffs P, Norling B, Hoorfar J, Griffiths M, Radstrom P (2005) Quantification of / Campylobacter spp. in chicken rinse samples by using flotation prior to real-time PCR. Appl Environ Microbiol 71(10):5759鈥?764. doi:10.1128/AEM.71.10.5759-5764.2005
    142. Woudstra C, Skarin H, Anniballi F, Auricchio B, De Medici D, Bano L, Drigo I, Hansen T, Lofstrom C, Hamidjaja R, van Rotterdam BJ, Koene M, Bayon-Auboyer MH, Buffereau JP, Fach P (2013) Validation of a real-time PCR based method for detection of / Clostridium botulinum types C, D and their mosaic variants C-D and D-C in a multicenter collaborative trial. Anaerobe 22:31鈥?7. doi:10.1016/j.anaerobe.2013.05.002
    143. Zhang G, Brown EW, Gonzalez-Escalona N (2011) Comparison of real-time PCR, reverse transcriptase real-time PCR, loop-mediated isothermal amplification, and the FDA conventional microbiological method for the detection of / Salmonella spp. in produce. Appl Environ Microbiol 77(18):6495鈥?501. doi:10.1128/AEM.00520-11
    144. Zhao T, Zhao P, Doyle MP (2012) Detection and isolation of / Yersinia pestis without fraction 1 antigen by monoclonal antibody in foods and water. J Food Prot 75(9):1555鈥?561. doi:10.4315/0362-028X.JFP-11-514
    145. Zuo H, Xie Z, Ding X, Zhang W, Yang J, Fan X, Poms R, Pei X (2011) A novel magnetic xapture-multiplex PCR assay for the simultaneous detection of three foodborne pathogens. Qual Assur Saf Crops Foos 3:212鈥?20
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Food Science
    Chemistry
    Microbiology
    Analytical Chemistry
  • 出版者:Springer New York
  • ISSN:1936-976X
文摘
Microbiological analysis is an integral part of food quality control, as well as of the management of food chain safety. Microbiological testing of foodstuffs complements the preventive approach to food safety activities based mainly on implementation and application of the concept of Hazard Analysis and Critical Control Points (HACCP). Traditional microbiological methods are powerful but lengthy and cumbersome and therefore not fully compatible with current requirements. Even more, pathogens exist that are fastidious to cultivate or uncultivable at all. Besides immunological tests, molecular methods, specifically those based on polymerase chain reaction (PCR), are available options to meet industry and enforcement needs. The clear advantage of PCR over all other rapid methods is the striking analytical principle that is based on amplification of DNA, a molecule being present in every cell prone to multiply. Just by changing primers and probes, different genomes such as bacteria, viruses or parasites can be detected. A second advantage is the ability to both detect and quantify a biotic contaminant. Some previously identified obstacles of implementation of molecular methods have already been overcome. Technical measures became available that improved robustness of molecular methods, and equipment and biochemicals became much more affordable. Unfortunately, molecular methods suffer from certain drawbacks that hamper their full integration to food safety control. Those encompass a suitable sample pre-treatment especially for a quantitative extraction of bacteria and viruses from solid foods, limited availability of appropriate controls to evaluate the effectiveness of the analytical procedure, the current inability of molecular methods to distinguish DNA from viable cells and DNA from dead or non-cultivable cells, and the slow progress of international harmonisation and standardisation, which limit full acceptance of PCR-based methods in food control. The aim of this review is to describe the context and the prospects of PCR-based methods, as well as trends in research and development aimed at solving the next decade challenges in order to achieve full integration of molecular methods in food safety control.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700