Establishment of temperature control scheme for microbioreactor operation using integrated microheater
详细信息    查看全文
  • 作者:Muhd Nazrul Hisham Zainal Alam ; Amir Ali Amiri Moghadam…
  • 刊名:Microsystem Technologies
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:21
  • 期:2
  • 页码:415-428
  • 全文大小:2,198 KB
  • 参考文献:1. Amanullah A, Otero JM, Mikola M, Hsu A, Zhang J, Aunins J, Schreyer HB, Hope JA, Russo AP (2010) Novel micro-bioreactor high throughput technology for cell culture process development: reproducibility and scalability assessment of fed-batch CHO cultures. Biotechnol Bioeng 106(1):57-7
    2. Arroyo-Lopez FN, Orlic S, Querol A, Barrio E (2009) Effects of temperature, pH and sugar concentration on the growth parameters of / Saccharomyces cerev / isiae, / S. kudriavzevii and their interspecific hybrid. J Food Microbiol 131:120-27 CrossRef
    3. Boccazzi P, Zhang Z, Kurosaw K, Szita N, Bhattacharya S, Jensen KF, Sinskey AJ (2006) Differential gene expression profiles and real-time measurements of growth parameters in / Saccharomyces cerev / isiae grown in microliter-scale bioreactors equipped with internal stirring. Biotechnol Prog 22:710-17 CrossRef
    4. Bower DM, Lee KS, Ram RJ, Prather LJ (2012) Fed-batch microbioreactor platform for scale down and analysis of a plasmid DNA production process. Biotechnol Bioeng 109(8):1976-986 CrossRef
    5. Chen A, Chitta R, Chang D, Anianullah A (2009) Twenty-four well plate miniature bioreactor system as a scale-down model for cell culture process development. Biotechnol Bioeng 102(1):148-60 CrossRef
    6. Chuppa S, Tsai Y, Yoon S, Shackleford S, Rozales C, Bhat R, Tsay G, Matanguihan C, Konstantinov K, Naveh D (1996) Fermentor temperature as a tool for control of high-density perfusion cultures of mammalian cells. Biotechnol Bioeng 55:328-38 CrossRef
    7. Edlich A, Magdanz V, Rasch D, Zadeh SA, K?hler C, Segura R, Radespiel R, Büttgenbach S, Franco-Lara E, Krull R (2010) Microfluidic reactor for continuous cultivation of / Saccharomyces cerevisiae. Biotechnol Prog 26(5):1259-270 CrossRef
    8. Funke M, Buchenauer A, Schnakenberg U, Mokwa W, Diederichs S, Mertens A, Müller C, Kensy F, Büchs J (2010) Microfluidic biolector-microfluidic bioprocess control in microtiter plates. Biotechnol Bioeng 107(3):497-05 CrossRef
    9. Gernaey KV, Baganz F, Franco-Lara E, Kensy F, Krühne U, Luebberstedt M, Marx U, Palmqvist E, Schmid A, Schubert F, Mandenius CF (2012) Monitoring and control of microbioreactors: an expert opinion on development needs. Biotechnol J 7:1308-314 CrossRef
    10. Hsu W-T, Aulakh RPS, Traul DL, Yuk IH (2012) Advanced microscale bioreactor system: a representative scale-down model for bench-top bioreactors. Cytotech. doi:10.1007/s10616-012-9446-1
    11. Hua M, Xuan F, Tu S-T, Xia C, Zhu H, Shao H (2011) Study of an efficient temperature measurement for an industrial bioreactor. Measurement 44:875-80 CrossRef
    12. Isett K, George H, Herber W, Amanullah A (2007) Twenty-four-well plate miniature bioreactor high-throughput system: assessment for microbial cultivations. Biotechnol Bioeng 98(5):1017-028 CrossRef
    13. Krommenhoek EE, van Leeuwen M, Gardeniers H, van Gulik WM, van den Berg A, Li X, Ottens M, van der Wielen LAM, Heijnen JJ (2008) Lab-scale fermentation tests of microchip with integrated electrochemical sensors for pH, temperature, dissolved oxygen and viable biomass concentration. Biotechnol Bioeng 99(4):884-92 CrossRef
    14. Lee HL, Bocazzi P, Ram RJ, Sinskey AJ (2006) Microbioreactor arrays with integrated mixers and fluid injectors for high throughput experimentation with pH and dissolved oxygen control. Lab Chip 6:1229-235 CrossRef
    15. Legmann R, Schreyer HB, Combs RG, McCormick EL, Russo AP, Rodgers ST (2009) A predictive high-through
  • 刊物类别:Engineering
  • 刊物主题:Electronics, Microelectronics and Instrumentation
    Nanotechnology
    Mechanical Engineering
    Operating Procedures and Materials Treatment
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1858
文摘
This paper presents design and fabrication of a microbioreactor platform, and implementation of two temperature control methods (i.e. on-off and PID) and their performance evaluation on the microbioreactor platform (working volume ~300?μL). The temperature of the microbioreactor content is controlled by using a subminiature heater placed underneath the microbioreactor and is measured with a miniature Pt 100 sensor. The microbioreactor is also integrated with a magnetic stirring capacity and a water evaporation control scheme. Programs for the two temperature control methods are written in LabVIEW software and implemented by interfacing them with a data acquisition card. It is shown that by implementing on–off and PID temperature control methods, the temperature of the microbioreactor content can be tightly controlled with an accuracy of approximately ±0.5?°C of the set point values. Both control methods also provide a good response and settling time values (i.e. around 2?min). Contrary to the on/off control method, the PID control method requires no adjustments whenever the set-point values are modified. The PID temperature control method works well for the entire tested range.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700