An automated workflow for enhancing microbial bioprocess optimization on a novel microbioreactor platform
详细信息    查看全文
  • 作者:Peter Rohe (1)
    Deepak Venkanna (1)
    Britta Kleine (2)
    Roland Freudl (2)
    Marco Oldiges (1)
  • 关键词:Microbioreactor ; Biolector ; Bioprocess development ; Strain screening ; Heterologous protein expression ; Automation ; Liquid ; handling
  • 刊名:Microbial Cell Factories
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:11
  • 期:1
  • 全文大小:514KB
  • 参考文献:1. Doig SB F, Lye GL: High throughput screening and process optimisation. In / Basic Biotechnology 3rd edition. Edited by: Ratledge CK B. 2006.
    2. Baneyx F: Recombinant protein expression in Escherichia coli . / Curr Opin Biotech 1999, 10:411鈥?21. CrossRef
    3. Weickert MJ, Doherty DH, Best EA, Olins PO: Optimization of heterologous protein production in Escherichia coli . / Curr Opin Biotech 1996, 7:494鈥?99. CrossRef
    4. Hust M, Steinwand M, Al-Halabi L, Helmsing S, Schirrmann T, Dubel S: Improved microtitre plate production of single chain Fv fragments in Escherichia coli . / New Biotechnol 2009, 25:424鈥?28. CrossRef
    5. Donovan RS, Robinson CW, Glick BR: Review: optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. / J Ind Microbiol 1996, 16:145鈥?54. CrossRef
    6. Makrides SC: Strategies for achieving high-level expression of genes in Escherichia coli . / Microbiol Rev 1996, 60:512鈥?38.
    7. Duetz WA: Microtiter plates as mini-bioreactors: miniaturization of fermentation methods. / Trends Microbiol 2007, 15:469鈥?75. CrossRef
    8. Schapper D, Alam MN, Szita N, Eliasson Lantz A, Gernaey KV: Application of microbioreactors in fermentation process development: a review. / Anal Bioanal Chem 2009, 395:679鈥?95. CrossRef
    9. Hermann R, Lehmann M, Buchs J: Characterization of gas鈥搇iquid mass transfer phenomena in microtiter plates. / Biotechnol Bioeng 2003, 81:178鈥?86. CrossRef
    10. Betts JI, Baganz F: Miniature bioreactors: current practices and future opportunities. / Microb Cell Fact 2006, 5:21. CrossRef
    11. Bareither R, Pollard D: A Review of Advanced Small-Scale Parallel Bioreactor Technology for Accelerated Process Development: Current State and Future Need. / Biotechnol Progr 2011, 27:2鈥?4. CrossRef
    12. Jourdier E, Poughon L, Larroche C, Monot F, Chaabane FB: A new stoichiometric miniaturization strategy for screening of industrial microbial strains: application to cellulase hyper-producing Trichoderma reesei strains. / Microb Cell Fact 2012, 11:70. CrossRef
    13. Ge X, Hanson M, Shen H, Kostov Y, Brorson KA, Frey DD, Moreira AR, Rao G: Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture. / J Biotechnol 2006, 122:293鈥?06. CrossRef
    14. Puskeiler R, Kaufmann K, Weuster-Botz D: Development, parallelization, and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design (HTBD). / Biotechnol Bioeng 2005, 89:512鈥?23. CrossRef
    15. Ahn WS, Ahn JY, Jung CH, Hwang KY, Kim EE, Kim J, Im H, Kim JO, Yu MH, Lee C: Optimization of expression conditions for soluble protein by using a robotic system of multi-culture vessels. / J Microbiol Biotechnol 2007, 17:1868鈥?874.
    16. Funke M, Diederichs S, Kensy F, Muller C, Buchs J: The baffled microtiter plate: increased oxygen transfer and improved online monitoring in small scale fermentations. / Biotechnol Bioeng 2009, 103:1118鈥?128. CrossRef
    17. Anderlei T, Zang W, Buchs J: Online respiration activity measurement (OTR, CTR, RQ) in shake flasks. / Biochem Eng J 2004, 17:187鈥?94. CrossRef
    18. Wittmann C, Kim HM, John G, Heinzle E: Characterization and application of an optical sensor for quantification of dissolved O2 in shake-flasks. / Biotechnol Lett 2003, 25:377鈥?80. CrossRef
    19. Kensy F, Zimmermann HF, Knabben I, Anderlei T, Trauthwein H, Dingerdissen U, Buchs J: Oxygen transfer phenomena in 48-well microtiter plates: Determination by optical monitoring of sulfite oxidation and verification by real-time measurement during microbial growth. / Biotechnol Bioeng 2005, 89:698鈥?08. CrossRef
    20. Puskeiler R, Kusterer A, John GT, Weuster-Botz D: Miniature bioreactors for automated high-throughput bioprocess design (HTBD): reproducibility of parallel fed-batch cultivations with Escherichia coli . / Biotechnol Appl Biochem 2005, 42:227鈥?35. CrossRef
    21. Huber R, Ritter D, Hering T, Hillmer AK, Kensy F, Muller C, Wang L, Buchs J: Robo-Lector - a novel platform for automated high-throughput cultivations in microtiter plates with high information content. / Microb Cell Fact 2009, 8:42. CrossRef
    22. Knorr B, Schlieker H, Hohmann H-P, Weuster-Botz D: Scale-down and parallel operation of the riboflavin production process with Bacillus subtilis . / Biochem Eng J 2007, 33:263鈥?74. CrossRef
    23. Zimmermann HF, Degussa JR: A Fully Automated Robotic System for High Throughput Fermentation. / J Assoc Lab Automation 2006, 11:134鈥?37. CrossRef
    24. Samorski M, Muller-Newen G, Buchs J: Quasi-continuous combined scattered light and fluorescence measurements: a novel measurement technique for shaken microtiter plates. / Biotechnol Bioeng 2005, 92:61鈥?8. CrossRef
    25. Kensy F, Zang E, Faulhammer C, Tan RK, Buchs J: Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates. / Microb Cell Fact 2009, 8:31. CrossRef
    26. Park JH, Lee SY: Metabolic pathways and fermentative production of L-aspartate family amino acids. / Biotechnol J 2010, 5:560鈥?77. CrossRef
    27. Eggeling L, Bott M: / Handbook of Corynebacterium glutamicum. Boca Raton, FL: CRC Press; 2005. CrossRef
    28. Billman-Jacobe H, Wang L, Kortt A, Stewart D, Radford A: Expression and secretion of heterologous proteases by Corynebacterium glutamicum . / Appl Environ Microb 1995, 61:1610鈥?613.
    29. Meissner D, Vollstedt A, van Dijl J, Freudl R: Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria. / Appl Microbiol Biot 2007, 76:633鈥?42. CrossRef
    30. Teramoto H, Watanabe K, Suzuki N, Inui M, Yukawa H: High yield secretion of heterologous proteins in Corynebacterium glutamicum using its own Tat-type signal sequence. / Appl Microbiol Biot 2011, 91:677鈥?87. CrossRef
    31. Kikuchi Y, Itaya H, Date M, Matsui K, Wu L-F: Production of Chryseobacterium proteolyticum protein-glutaminase using the twin-arginine translocation pathway in Corynebacterium glutamicum . / Appl Microbiol Biot 2008, 78:67鈥?4. CrossRef
    32. Date M, Itaya H, Matsui H, Kikuchi Y: Secretion of human epidermal growth factor by Corynebacterium glutamicum . / Lett Appl Microbiol 2006, 42:66鈥?0. CrossRef
    33. Degering C, Eggert T, Puls M, Bongaerts J, Evers S, Maurer KH, Jaeger KE: Optimization of Protease Secretion in Bacillus subtilis and Bacillus licheniformis by Screening of Homologous and Heterologous Signal Peptides. / Appl Environ Microb 2010, 76:6370鈥?376. CrossRef
    34. Brockmeier U, Caspers M, Freudl R, Jockwer A, Noll T, Eggert T: Systematic screening of all signal peptides from Bacillus subtilis : a powerful strategy in optimizing heterologous protein secretion in Gram-positive bacteria. / J Mol Biol 2006, 362:393鈥?02. CrossRef
    35. David F, Westphal R, Bunk B, Jahn D, Franco-Lara E: Optimization of antibody fragment production in Bacillus megaterium : The role of metal ions on protein secretion. / J Biotechnol 2010, 150:115鈥?24. CrossRef
    36. Kottmeier K, Muller C, Huber R, Buchs J: Increased product formation induced by a directed secondary substrate limitation in a batch Hansenula polymorpha culture. / Appl Microbiol Biot 2010, 86:93鈥?01. CrossRef
    37. Nealon AJ, Willson KE, Pickering SC, Clayton TM, O'Kennedy RD, Titchener-Hooker NJ, Lye GJ: Use of operating windows in the assessment of integrated robotic systems for the measurement of bioprocess kinetics. / Biotechnol Progr 2005, 21:283鈥?91. CrossRef
    38. van Ooyen J, Noack S, Bott M, Reth A, Eggeling L: Improved L-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity. / Biotechnol Bioeng 2012, 109:2070鈥?081. CrossRef
    39. Gourdon P, Lindley ND: Metabolic analysis of glutamate production by Corynebacterium glutamicum. / Metab Eng 1999, 1:224鈥?31. CrossRef
    40. Blombach B, Schreiner M, Bartek T, Oldiges M, Eikmanns B: Corynebacterium glutamicum tailored for high-yield L-valine production. / Appl Microbiol Biot 2008, 79:471鈥?79. CrossRef
    41. Litsanov B, Kabus A, Brocker M, Bott M: Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum . / Microb Biotechnol 2012, 5:116鈥?28. CrossRef
    42. Weuster-Botz D, Kelle R, Frantzen M, Wandrey C: Substrate Controlled Fed-Batch Production of l-Lysine with Corynebacterium glutamicum . / Biotechnol Progr 1997, 13:387鈥?93. CrossRef
    43. Keilhauer C, Eggeling L, Sahm H: Isoleucine synthesis in Corynebacterium glutamicum : molecular analysis of the ilvB-ilvN-ilvC operon. / J Bacteriol 1993, 175:5595鈥?603.
    44. von der Osten CH, Gioannetti C, Sinskey AJ: Design of a defined medium for growth of Corynebacterium glutamicum in which citrate facilitates iron uptake. / Biotechnol Lett 1989, 11:11鈥?6. CrossRef
    45. Hallborn J, Carlsson R: Automated screening procedure for high-throughput generation of antibody fragments. / Biotechniques 2002, 33:30鈥?7.
    46. Kondragunta B, Drew JL, Brorson KA, Moreira AR, Rao G: Advances in Clone Selection Using High-Throughput Bioreactors. / Biotechnol Progr 2010, 26:1095鈥?103.
    47. Wenk P, Hemmerich J, M眉ller C, Kensy F: High-Throughput Bioprocess Development in Shaken Microbioreactors. / Chem-Ing-Tech 2012, 84:704鈥?14. CrossRef
    48. Huber R, Scheidle M, Dittrich B, Klee D, Buchs J: Equalizing growth in high-throughput small scale cultivations via precultures operated in fed-batch mode. / Biotechnol Bioeng 2009, 103:1095鈥?102. CrossRef
    49. Panula-Perala J, Siurkus J, Vasala A, Wilmanowski R, Casteleijn MG, Neubauer P: Enzyme controlled glucose auto-delivery for high cell density cultivations in microplates and shake flasks. / Microb Cell Fact 2008, 7:31. CrossRef
    50. Siurkus J, Panula-Perala J, Horn U, Kraft M, Rimseliene R, Neubauer P: Novel approach of high cell density recombinant bioprocess development: Optimisation and scale-up from microlitre to pilot scales while maintaining the fed-batch cultivation mode of E. coli cultures. / Microb Cell Fact 2010, 9:35. CrossRef
    51. Huber R, Palmen TG, Ryk N, Hillmer AK, Luft K, Kensy F, Buchs J: Replication methods and tools in high-throughput cultivation processes - recognizing potential variations of growth and product formation by on-line monitoring. / BMC Biotechnol 2010, 10:22. CrossRef
    52. Riesenberg D, Menzel K, Schulz V, Schumann K, Veith G, Zuber G, Knorre WA: High cell density fermentation of recombinant Escherichia coli expressing human interferon alpha 1. / Appl Microbiol Biot 1990, 34:77鈥?2. CrossRef
    53. Funke M, Buchenauer A, Schnakenberg U, Mokwa W, Diederichs S, Mertens A, Muller C, Kensy F, Buchs J: Microfluidic BioLector-Microfluidic Bioprocess Control in Microtiter Plates. / Biotechnol Bioeng 2010, 107:497鈥?05. CrossRef
    54. Eikmanns BJ, Kleinertz E, Liebl W, Sahm H: A family of Corynebacterium glutamicum / Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. / Gene 1991, 102:93鈥?8. CrossRef
    55. Yawalkar AA, Heesink ABM, Versteeg GF, Pangarkar VG: Gas鈥搇iquid Mass Transfer Coefficient in Stirred Tank Reactors. / Can J Chem Eng 2008, 80:840鈥?48. CrossRef
    56. Van鈥榯 Riet K: Mass transfer in fermentation. / Trends Biotechnol 1983, 1:113鈥?19. CrossRef
    57. Winkler UK, Stuckmann M: Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. / J Bacteriol 1979, 138:663鈥?70.
  • 作者单位:Peter Rohe (1)
    Deepak Venkanna (1)
    Britta Kleine (2)
    Roland Freudl (2)
    Marco Oldiges (1)

    1. Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systems Biotechnology, Forschungszentrum J眉lich GmbH, 52425, J眉lich, Germany
    2. Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systemic Microbiology, Forschungszentrum J眉lich GmbH, 52425, J眉lich, Germany
  • ISSN:1475-2859
文摘
Background High-throughput methods are widely-used for strain screening effectively resulting in binary information regarding high or low productivity. Nevertheless achieving quantitative and scalable parameters for fast bioprocess development is much more challenging, especially for heterologous protein production. Here, the nature of the foreign protein makes it impossible to predict the, e.g. best expression construct, secretion signal peptide, inductor concentration, induction time, temperature and substrate feed rate in fed-batch operation to name only a few. Therefore, a high number of systematic experiments are necessary to elucidate the best conditions for heterologous expression of each new protein of interest. Results To increase the throughput in bioprocess development, we used a microtiter plate based cultivation system (Biolector) which was fully integrated into a liquid-handling platform enclosed in laminar airflow housing. This automated cultivation platform was used for optimization of the secretory production of a cutinase from Fusarium solani pisi with Corynebacterium glutamicum. The online monitoring of biomass, dissolved oxygen and pH in each of the microtiter plate wells enables to trigger sampling or dosing events with the pipetting robot used for a reliable selection of best performing cutinase producers. In addition to this, further automated methods like media optimization and induction profiling were developed and validated. All biological and bioprocess parameters were exclusively optimized at microtiter plate scale and showed perfect scalable results to 1 L and 20 L stirred tank bioreactor scale. Conclusions The optimization of heterologous protein expression in microbial systems currently requires extensive testing of biological and bioprocess engineering parameters. This can be efficiently boosted by using a microtiter plate cultivation setup embedded into a liquid-handling system, providing more throughput by parallelization and automation. Due to improved statistics by replicate cultivations, automated downstream analysis, and scalable process information, this setup has superior performance compared to standard microtiter plate cultivation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700