A New Method for Genome-wide Marker Development and Genotyping Holds Great Promise for Molecular Primatology
详细信息    查看全文
  • 作者:Christina M. Bergey (1) (2)
    Luca Pozzi (1) (2)
    Todd R. Disotell (1) (2)
    Andrew S. Burrell (1)
  • 关键词:Genotyping ; Nonmodel organisms ; Phylogenetics ; Population genetics ; Restriction site–associated DNA sequencing ; Second ; generation DNA sequencing ; Single ; nucleotide polymorphisms
  • 刊名:International Journal of Primatology
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:34
  • 期:2
  • 页码:303-314
  • 全文大小:315KB
  • 参考文献:1. Anderson, E. C., & Garza, J. C. (2006). The power of single-nucleotide polymorphisms for large-scale parentage inference. / Genetics, 172(4), 2567-582. CrossRef
    2. Avise, J. C. (1994). / Molecular markers, natural history, and evolution. New York: Chapman & Hall. CrossRef
    3. Baird, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., Selker, E. U., et al. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. / PloS One, 3(10), e3376. CrossRef
    4. Barnett, D. W., Garrison, E. K., Quinlan, A. R., Str?mberg, M. P., & Marth, G. T. (2011). BamTools: a C++ API and toolkit for analyzing and managing BAM files. / Bioinformatics, 27(12), 1691-692. CrossRef
    5. Burbano, H. A., Hodges, E., Green, R. E., Briggs, A. W., Krause, J., Meyer, M., et al. (2010). Targeted investigation of the Neanderthal genome by array-based sequence capture. / Science, 328(5979), 723-25. CrossRef
    6. Catchen, J. M., Amores, A., Hohenlohe, P., Cresko, W., & Postlethwait, J. H. (2011). Stacks: Building and genotyping loci de novo from short-read sequences. / G3, 1(3), 171-82. CrossRef
    7. Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., et al. (2011). The variant call format and VCFtools. / Bioinformatics, 27(15), 2156-158. CrossRef
    8. Davey, J. W., Cezard, T., Fuentes-Utrilla, P., Eland, C., Gharbi, K., & Blaxter, M. L. (2012). Special features of RAD sequencing data: Implications for genotyping. / Molecular Ecology. doi:<span class="a-plus-plus non-url-ref">10.1111/mec.12084 .
    9. Davey, J. W., Hohenlohe, P. A., Etter, P. D., Boone, J. Q., Catchen, J. M., & Blaxter, M. L. (2011). Genome-wide genetic marker discovery and genotyping using next-generation sequencing. / Nature Reviews Genetics, 12(7), 499-10. CrossRef
    10. Degnan, J. H., & Rosenberg, N. A. (2009). Gene tree discordance, phylogenetic inference and the multispecies coalescent. / Trends in Ecology and Evolution, 24(6), 332-40. CrossRef
    11. DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., Philippakis, A. A., et al. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. / Nature Genetics, 43(5), 491-98. CrossRef
    12. Di Fiore, A. (2003). Molecular genetic approaches to the study of primate behavior, social organization, and reproduction. / Yearbook of Physical Anthropology, 46, 62-9. CrossRef
    13. Edwards, S. V. (2009). Is a new and general theory of molecular systematics emerging? / Evolution: International Journal of Organic Evolution, 63(1), 1-9. CrossRef
    14. Emerson, K., Merz, C., & Catchen, J. (2010). Resolving postglacial phylogeography using high-throughput sequencing. / Proceedings of the National Academy of Sciences of the USA, 107(37), 16196-6200. CrossRef
    15. Enard, W., & P??bo, S. (2004). Comparative primate genomics. / Annual Review of Genomics and Human Genetics, 5, 351-78. CrossRef
    16. Etter, P. D., Bassham, S., Hohenlohe, P. A., Johnson, E., & Cresko, W. A. (2011). SNP discovery and genotyping for evolutionary genetics using RAD sequencing. In V. Orgogozo & M. V. Rockman (Eds.), / Molecular methods for evolutionary genetics (pp. 157-78). New York: Humana Press.
    17. Goodman, M., Grossman, L. I., & Wildman, D. E. (2005). Moving primate genomics beyond the chimpanzee genome. / Trends in Genetics, 21(9), 511-17. CrossRef
    18. Hauser, L., Baird, M., Hilborn, R., Seeb, L. W., & Seeb, J. E. (2011). An empirical comparison of SNPs and microsatellites for parentage and kinship assignment in a wild sockeye salmon ( / Oncorhynchus nerka) population. / Molecular Ecology Resources, 11(Supplement 1), 150-61. CrossRef
    19. Hohenlohe, P. A., Amish, S. J., Catchen, J. M., Allendorf, F. W., & Luikart, G. (2011). Next-generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout. / Molecular Ecology Resources, 11(Supplement 1), 117-22. CrossRef
    20. Hohenlohe, P. A., Bassham, S., Currey, M., & Cresko, W. A. (2012). Extensive linkage disequilibrium and parallel adaptive divergence across threespine stickleback genomes. / Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367(1587), 395-08. CrossRef
    21. Hohenlohe, P. A., Bassham, S., Etter, P. D., Stiffler, N., Johnson, E. A., & Cresko, W. A. (2010). Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. / PLoS Genetics, 6(2), e1000862. CrossRef
    22. Human Genome Sequencing Consortium (2001). Initial sequencing and analysis of the human genome. / Nature, / 409(6822), 860-21.
    23. Jones, A. G., Small, C. M., Paczolt, K. A., & Ratterman, N. L. (2010). A practical guide to methods of parentage analysis. / Molecular Ecology Resources, 10(1), 6-0. CrossRef
    24. Keller, I., Wagner, C. E., Greuter, L., Mwaiko, S., Selz, O. M., Sivasundar, A., et al. (2012). Population genomic signatures of divergent adaptation, gene flow and hybrid speciation in the rapid radiation of Lake Victoria cichlid fishes. / Molecular Ecology. doi:<span class="a-plus-plus non-url-ref">10.1111/mec.12083 .
    25. Krause, J., Fu, Q., Good, J. M., Viola, B., Shunkov, M. V., Derevianko, A. P., et al. (2010). The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. / Nature, 464(7290), 894-97. CrossRef
    26. Lemmon, A. R., Emme, S. A., & Lemmon, E. M. (2012). Anchored hybrid enrichment for massively high-throughput phylogenomics. / Systematic Biology, 61(5), 727-44. CrossRef
    27. Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. / Bioinformatics, 25(14), 1754-760. CrossRef
    28. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., et al. (2009). The sequence alignment/map format and SAMtools. / Bioinformatics, 25(16), 2078-079. CrossRef
    29. Maddison, W. P. (1997). Gene trees in species trees. / Systematic Biology, 46(3), 523. CrossRef
    30. Maddison, W. P., & Knowles, L. L. (2006). Inferring phylogeny despite incomplete lineage sorting. / Systematic Biology, 55(1), 21-0. CrossRef
    31. Mason, V. C., Li, G., Helgen, K. M., & Murphy, W. J. (2011). Efficient cross-species capture hybridization and next-generation sequencing of mitochondrial genomes from noninvasively sampled museum specimens. / Genome Research, 21(10), 1695-704. CrossRef
    32. McCormack, J. E., Hird, S. M., Zellmer, A. J., Carstens, B. C., & Brumfield, R. T. (2012). Applications of next-generation sequencing to phylogeography and phylogenetics. / Molecular Phylogenetics and Evolution. doi:<span class="a-plus-plus non-url-ref">10.1016/j.ympev.2011.12.007 .
    33. Meyer, L. R., Zweig, A. S., Hinrichs, A. S., Karolchik, D., Kuhn, R. M., Wong, M., Sloan, C. A., et al. (2013). The UCSC Genome Browser database: Extensions and updates 2013. / Nucleic Acids Research, 41(D1), D46–D69. CrossRef
    34. Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A., & Johnson, E. A. (2007). Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. / Genome Research, 17(2), 240-48. CrossRef
    35. Nadeau, N. J., Martin, S. H., Kozak, K. M., Salazar, C., Dasmahapatra, K. K., Davey, J. W., et al. (2012). Genome-wide patterns of divergence and gene flow across a butterfly radiation. / Molecular Ecology. doi:<span class="a-plus-plus non-url-ref">10.1111/j.1365-294X.2012.05730.x .
    36. Perelman, P., Johnson, W. E., Roos, C., Seuánez, H. N., Horvath, J. E., Moreira, M. A. M., et al. (2011). A molecular phylogeny of living primates. / PLoS Genet, 7(3), e1001342. CrossRef
    37. Perry, G. H., Marioni, J. C., Melsted, P., & Gilad, Y. (2010). Genomic-scale capture and sequencing of endogenous DNA from feces. / Molecular Ecology, 19(24), 5332-344. CrossRef
    38. Perry, G. H., Reeves, D., Melsted, P., Ratan, A., Miller, W., Michelini, K., Louis, E. E., et al. (2012). A genome sequence resource for the aye-aye ( / Daubentonia madagascariensis), a nocturnal lemur from Madagascar. / Genome Biology and Evolution, 4(2), 126-35. CrossRef
    39. Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra, H. E. (2012). Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. / PloS One, 7(5), e37135. CrossRef
    40. Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. / Bioinformatics, 26(6), 841-42. CrossRef
    41. Rubin, B. E. R., Ree, R. H., & Moreau, C. S. (2012). Inferring phylogenies from RAD sequence data. / PloS One, 7(4), e33394. CrossRef
    42. Steiper, M. E., & Seiffert, E. R. (2012). Evidence for a convergent slowdown in primate molecular rates and its implications for the timing of early primate evolution. / Proceedings of the National Academy of Sciences of the USA, 109(16), 6006-011. CrossRef
    43. Ting, N., & Sterner, K. N. (2012). Primate molecular phylogenetics in a genomic era. / Molecular Phylogenetics and Evolution. doi:<span class="a-plus-plus non-url-ref">10.1016/j.ympev.2012.08.021 .
    44. Wagner, C. E., Keller, I., Wittwer, S., Selz, O. M., Mwaiko, S., Greuter, L., et al. (2012). Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. / Molecular Ecology. doi:<span class="a-plus-plus non-url-ref">10.1111/mec.12023 .
    45. Wilkinson, R. D., Steiper, M. E., Soligo, C., Martin, R. D., Yang, Z., & Tavaré, S. (2011). Dating primate divergences through an integrated analysis of palaeontological and molecular data. / Systematic Biology, 60(1), 16-1. CrossRef
  • 作者单位:Christina M. Bergey (1) (2)
    Luca Pozzi (1) (2)
    Todd R. Disotell (1) (2)
    Andrew S. Burrell (1)

    1. Department of Anthropology, New York University, New York, NY, 10003, USA
    2. New York Consortium in Evolutionary Primatology, New York, USA
  • ISSN:1573-8604
文摘
Over the last two decades primatologists have benefited from the use of numerous molecular markers to study various aspects of primate behavior and evolutionary history. However, most of the studies to date have been based on a single locus, usually mitochondrial DNA, or a few nuclear markers, e.g., microsatellites. Unfortunately, the use of such markers not only is unable to address successfully important questions in primate population genetics and phylogenetics (mainly because of the discordance between gene tree and species tree), but also their development is often a time-consuming and expensive task. The advent of next-generation sequencing allows researchers to generate large amounts of genomic data for nonmodel organisms. However, whole genome sequencing is still cost prohibitive for most primate species. We here introduce a second-generation sequencing technique for genotyping thousands of genome-wide markers for nonmodel organisms. Restriction site–associated DNA sequencing (RAD-seq) reduces the complexity of the genome and allows inexpensive and fast discovery of thousands of markers in many individuals. Here, we describe the principles of this technique and we demonstrate its application in five primates, Microcebus sp., Cebus sp., Theropithecus gelada, Pan troglodytes, and Homo sapiens, representing some of the major lineages within the order. Despite technical and bioinformatic challenges, RAD-seq is a promising method for multilocus phylogenetic and population genetic studies in primates, particularly in young clades in which a high number of orthologous regions are likely to be found across populations or species.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700