Combined Experimental and Mathematical Approach for Development of Microfabrication-Based Cancer Migration Assay
详细信息    查看全文
  • 作者:Saheli Sarkar (1)
    Bethany L. Bustard (2)
    Jean F. Welter (3)
    Harihara Baskaran (2) hari@case.edu
  • 关键词:Microfabrication &#8211 ; Breast cancer &#8211 ; Stromal cells &#8211 ; Mathematical model &#8211 ; Multi ; component transport &#8211 ; Soft lithography &#8211 ; Homotypic interactions &#8211 ; Heterotypic interactions
  • 刊名:Annals of Biomedical Engineering
  • 出版年:2011
  • 出版时间:September 2011
  • 年:2011
  • 卷:39
  • 期:9
  • 页码:2346-2359
  • 全文大小:892.3 KB
  • 参考文献:1. Andasari, V., A. Gerisch, G. Lolas, A. P. South, and M. A. Chaplain. Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. J. Math. Biol. 63(1):141–171, 2010.
    2. Anderson, A. R. A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math. Med. Biol. 22(2):163–186, 2005.
    3. Bartsch, J. E., E. D. Staren, and H. E. Appert. Adhesion and migration of extracellular matrix-stimulated breast cancer. J. Surg. Res. 110(1):287–294, 2003.
    4. Bhatia, S. N., U. J. Balis, M. L. Yarmush, and M. Toner. Probing heterotypic cell interactions: hepatocyte function in microfabricated co-cultures. J. Biomater. Sci. Polym. Ed. 9(11):1137–1160, 1998.
    5. Cailleau, R., M. Olive, and Q. V. Cruciger. Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro 14(11):911–915, 1978.
    6. Casey, T. M., J. Eneman, A. Crocker, J. White, J. Tessitore, M. Stanley, S. Harlow, J. Y. Bunn, D. Weaver, H. Muss, and K. Plaut. Cancer associated fibroblasts stimulated by transforming growth factor beta1 (tgf-beta 1) increase invasion rate of tumor cells: a population study. Breast Cancer Res. Treat. 110(1):39–49, 2008.
    7. Chaplain, M. A., S. R. McDougall, and A. R. Anderson. Mathematical modeling of tumor-induced angiogenesis. Annu. Rev. Biomed. Eng. 8:233–257, 2006.
    8. Collins, V. P., R. K. Loeffler, and H. Tivey. Observations on growth rates of human tumors. Am. J. Roentgenol. Radium Ther. Nucl. Med. 76(5):988–1000, 1956.
    9. De Wever, O., Q. D. Nguyen, L. Van Hoorde, M. Bracke, E. Bruyneel, C. Gespach, and M. Mareel. Tenascin-c and sf/hgf produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through rhoa and rac. FASEB J. 18(9):1016–1018, 2004.
    10. Dolle, J. P., A. Rezvan, F. D. Allen, P. Lazarovici, and P. I. Lelkes. Nerve growth factor-induced migration of endothelial cells. J. Pharmacol. Exp. Ther. 315(3):1220–1227, 2005.
    11. Eccles, S. A., C. Box, and W. Court. Cell migration/invasion assays and their application in cancer drug discovery. Biotechnol. Annu. Rev. 11:391–421, 2005.
    12. Entschladen, F., T. L. T. Drell, K. Lang, K. Masur, D. Palm, P. Bastian, B. Niggemann, and K. S. Zaenker. Analysis methods of human cell migration. Exp. Cell Res. 307(2):418–426, 2005.
    13. Folch, A., B. H. Jo, O. Hurtado, D. J. Beebe, and M. Toner. Microfabricated elastomeric stencils for micropatterning cell cultures. J. Biomed. Mater. Res. 52(2):346–353, 2000.
    14. Friedl, P., and K. Wolf. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3(5):362–374, 2003.
    15. Goswami, S., E. Sahai, J. B. Wyckoff, M. Cammer, D. Cox, F. J. Pixley, E. R. Stanley, J. E. Segall, and J. S. Condeelis. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res. 65(12):5278–5283, 2005.
    16. Hillen, T., and K. J. Painter. A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58(1–2):183–217, 2009.
    17. Kim, Y., S. Lawler, M. O. Nowicki, E. A. Chiocca, and A. Friedman. A mathematical model for pattern formation of glioma cells outside the tumor spheroid core. J. Theor. Biol. 260(3):359–371, 2009.
    18. Klein, G. Foulds’ dangerous idea revisited: the multistep development of tumors 40 years later. Adv. Cancer Res. 72:1–23, 1998.
    19. Klein, C. A. Parallel progression of primary tumours and metastases. Nat. Rev. Cancer 9(4):302–312, 2009.
    20. Krishna, R. Problems and pitfalls in the use of the Fick formulation for intraparticle diffusion. Chem. Eng. Sci. 48(5):845–861, 1993.
    21. Krishna, R., and J. A. Wesselingh. The Maxwell–Stefan approach to mass transfer. Chem. Eng. Sci. 52(6):861–911, 1997.
    22. Kroening, S., and M. Goppelt-Struebe. Analysis of matrix-dependent cell migration with a barrier migration assay. Sci. Signal 3(126):pl1, 2010.
    23. Lacroix, M., and G. Leclercq. Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res. Treat. 83(3):249–289, 2004.
    24. Liu, D., V. Martin, J. Fueyo, O. H. Lee, J. Xu, N. Cortes-Santiago, M. M. Alonso, K. Aldape, H. Colman, and C. Gomez-Manzano. Tie2/tek modulates the interaction of glioma and brain tumor stem cells with endothelial cells and promotes an invasive phenotype. Oncotarget 1(8):700–709, 2010.
    25. Marchant, B. P., J. Norbury, and H. M. Byrne. Biphasic behaviour in malignant invasion. Math. Med. Biol. 23(3):173–196, 2006.
    26. Neiva, K. G., Z. Zhang, M. Miyazawa, K. A. Warner, E. Karl, and J. E. Nor. Cross talk initiated by endothelial cells enhances migration and inhibits anoikis of squamous cell carcinoma cells through stat3/akt/erk signaling. Neoplasia 11(6):583–593, 2009.
    27. Nie, F. Q., M. Yamada, J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano. On-chip cell migration assay using microfluidic channels. Biomaterials 28(27):4017–4022, 2007.
    28. Orimo, A., P. B. Gupta, D. C. Sgroi, F. Arenzana-Seisdedos, T. Delaunay, R. Naeem, V. J. Carey, A. L. Richardson, and R. A. Weinberg. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated sdf-1/cxcl12 secretion. Cell 121(3):335–348, 2005.
    29. Painter, K. J., and J. A. Sherratt. Modelling the movement of interacting cell populations. J. Theor. Biol. 225(3):327–339, 2003.
    30. Perumpanani, A. J., and H. M. Byrne. Extracellular matrix concentration exerts selection pressure on invasive cells. Eur. J. Cancer 35(8):1274–1280, 1999.
    31. Poujade, M., E. Grasland-Mongrain, A. Hertzog, J. Jouanneau, P. Chavrier, B. Ladoux, A. Buguin, and P. Silberzan. Collective migration of an epithelial monolayer in response to a model wound. Proc. Natl. Acad. Sci. USA 104(41):15988–15993, 2007.
    32. Sadlonova, A., Z. Novak, M. R. Johnson, D. B. Bowe, S. R. Gault, G. P. Page, J. V. Thottassery, D. R. Welch, and A. R. Frost. Breast fibroblasts modulate epithelial cell proliferation in three-dimensional in vitro co-culture. Breast Cancer Res. 7(1):R46–R59, 2005.
    33. Sahai, E. Mechanisms of cancer cell invasion. Curr. Opin. Genet. Dev. 15(1):87–96, 2005.
    34. Sarkar, S., T. Egelhoff, and H. Baskaran. Insights into the roles of non-muscle myosin IIA in human keratinocyte migration. Cell Mol. Bioeng. 2(4):486–494, 2009.
    35. Sherratt, J. A. Wavefront propagation in a competition equation with a new motility term modelling contact inhibition between cell populations. Proc. Roy. Soc. Lond. Ser. A 456(2002):2365–2386, 2000.
    36. van der Meer, A. D., K. Vermeul, A. A. Poot, J. Feijen, and I. Vermes. A microfluidic wound-healing assay for quantifying endothelial cell migration. Am. J. Physiol. Heart Circ. Physiol. 298(2):H719–H725, 2010.
    37. van Horssen, R., N. Galjart, J. A. Rens, A. M. Eggermont, and T. L. ten Hagen. Differential effects of matrix and growth factors on endothelial and fibroblast motility: application of a modified cell migration assay. J. Cell Biochem. 99(6):1536–1552, 2006.
    38. Ward, J. P., and J. R. King. Mathematical modelling of avascular-tumour growth. IMA J. Math. Appl. Med. Biol. 14(1):39–69, 1997.
    39. Ward, J. P., and J. R. King. Mathematical modelling of avascular-tumour growth. II. Modelling growth saturation. IMA J. Math. Appl. Med. Biol. 16(2):171–211, 1999.
    40. Wyckoff, J. B., Y. Wang, E. Y. Lin, J. F. Li, S. Goswami, E. R. Stanley, J. E. Segall, J. W. Pollard, and J. Condeelis. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 67(6):2649–2656, 2007.
  • 作者单位:1. Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA2. Department of Chemical Engineering, Case Western Reserve University, 111C, A.W. Smith Building, 2102 Adelbert Road, Cleveland, OH 44106-7217, USA3. Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Biomedicine
    Biomedical Engineering
    Biophysics and Biomedical Physics
    Mechanics
    Biochemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-9686
文摘
Migration of cancer cells is a key determinant of metastasis, which is correlated with poor prognosis in patients. Evidence shows that cancer cell motility is regulated by stromal cell interactions. To quantify the role of homotypic and heterotypic cell–cell interaction in migration, a two-dimensional migration assay has been developed by microfabrication techniques. Two breast cancer cell lines, MDA-MB-231 and MDA-MB-453, were used to develop micropatterns of cancer cells (cell islands) that revealed distinct migration profiles in this assay. Although the individual migration rates of these cells showed only a sevenfold difference, MDA-MB-453 islands migrated significantly lower than MDA-MB-231 islands, indicating differential regulation of migration in isolated cells vs. islands. Island size had the greatest impact on migration, primarily for MDA-MB-231 cells. Migration of MDA-MB-231 islands was decreased by interaction with homotypic cells, and significantly more by heterotypic non-cancer-associated fibroblasts. In addition, a mathematical model of island migration in multi-cellular population has been developed using Stefan–Maxwell’s equation. The model showed qualitative agreement with experimental results and predicted a biphasic relation between cell densities and island sizes. The combined experimental and mathematical model can be used to quantitatively study the impact of cell–cell interactions on migration.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700