An integrated device for patterning cells and selectively detaching
详细信息    查看全文
  • 作者:Juan Wang (12)
    Weihua Pei (1) peiwh@semi.ac.cn
    Bo Yuan (3)
    Kai Guo (1)
    Kang Sun (3)
    Hongbo Sun (2) hbsun@jlu.edu.cn
    Hongda Chen (1)
  • 关键词:Cell detachment &#8211 ; Cell pattern &#8211 ; Electrode arrays &#8211 ; Switch array
  • 刊名:Biomedical Microdevices
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:14
  • 期:3
  • 页码:471-481
  • 全文大小:730.4 KB
  • 参考文献:1. Z.L. Chen, Y. Li, W.W. Liu, D.Z. Zhang, Y.Y. Zhao, B. Yuan, X.Y. Jiang, Angew. Chem. Int. Ed. 48, 8303–8305 (2009)
    2. C.Y. Fan, Y.C. Tung, S. Takayama, E. Meyh枚fer, K. Kurabayashi, Adv. Mater. 20, 1418–1423 (2008)
    3. J. Fukuda, R. Inaba, A. Khademhosseini, H. Suzuki, Biomaterials 30, 3573–3579 (2009)
    4. J.A. Garciaporrero, J.A. Collado, J.L. Ojeda, Anat. Rec. 193, 791–803 (1979)
    5. O. Guillaume-Gentil, Y. Akiyama, M. Schuler, C. Tang, M. Textor, M. Yamato, T. Okano, J. V枚r枚s, Adv. Mater. 20, 560–565 (2008)
    6. O. Guillaume-Gentil, M. Gabi, M. Zenobi-Wong, J. V枚r枚s, Biomed. Microdevices 13, 221–230 (2011)
    7. K. Guo, W.H. Pei, X. Zhang, S.J. Wang, L. Zhu, Q. Gui, H.D. Chen, Y. Wang, Proceedings of the IEEE (New York, 2009), pp. 951–953
    8. V. Handziski, J. Polastre, J.H. Hauer, C. Sharp, A. Wolisz, D. Culler, Proceedings of the EWSN 13 (2005)
    9. M. Harimoto, M. Yamato, A. Kikuchi, T. Okano, Macromol. Symp. 195, 231–235 (2003)
    10. M. Hasegawa, M. Yamato, A. Kikuchi, T. Okano, I. Ishikawa, Tissue Eng. 11, 469–478 (2005)
    11. B.T. Houseman, M. Mrksich, Biomaterials 22, 943–955 (2001)
    12. T.C.S. Hsu, J. Steinberg, A. Sawitsky, J. Clin. Pathol. 32, 1009–1013 (1979)
    13. T. Ide, K. Nishida, M. Yamato, T. Sumide, A. Kikuchi, T. Okano, Y. Tano, Proc. IEEE 45, U520 (2004)
    14. R. Inaba, A. Khademhosseini, H. Suzuki, J. Fukuda, Biomaterials 30, 3573–3579 (2009)
    15. X.Y. Jiang, R. Ferrigno, M. Mrksich, G.M. Whitesides, J. Am. Chem. Soc. 125, 2366–2367 (2003)
    16. G.L. Kenausis, J. V枚r枚s, D.L. Elbert, N.P. Huang, R. Hofer, L. Ruiz-Taylor, M. Textor, J.A. Hubbell, N.D. Spencer, J. Phys. Chem. B 104, 3298–3309 (2000)
    17. A. Khademhosseini, T.Y. Chang, V.G. Yadav, S. De Leo, A. Mohedas, B. Rajalingam, C.L. Chen, S. Selvarasah, M.R. Dokmeci, Langmuir 23, 11718–11725 (2007)
    18. S. Kwakye, A. Baeumner, Sens. Actuat. B Chem. 123, 336–343 (2007)
    19. D.A. Lauffenburger, A.F. Horwitz, Cell 84, 359–369 (1996)
    20. Y. Li, B. Yuan, H. Ji, D. Han, S.Q. Chen, F. Tian, X.Y. Jiang, Angew. Chem. Int. Ed. 46, 1094–1096 (2007)
    21. G.E. Loeb, A.E. Walker, S. Uematsu, B.W. Konigsmark, J. Biomed. Mater. Res. A 11, 195–210 (1977)
    22. N. Matsuda, T. Shimizu, M. Yamato, T. Okano, Adv. Mater. 19, 3089–3099 (2007)
    23. W.H. Pei, L. Zhu, S.J. Wang, K. Guo, J. Tang, X. Zhang, L. Lu, S.K. Gao, H.D. Chen, Sci. China Ser. E-Technol. Sci. 52, 1187–1190 (2009)
    24. M.A. Schwartz, M.D. Schaller, M.H. Ginsberg, Annu. Rev. Cell Dev. Biol. 11, 549–599 (1995)
    25. Y. Seto, R. Inaba, T. Okuyama, F. Sassa, H. Suzuki, J. Fukuda, Biomaterials 31, 2209–2215 (2010)
    26. S.S. Shah, J.Y. Lee, S. Verkhoturov, N. Tuleuova, E.A. Schweikert, E. Ramanculov, A. Revzin, Langmuir 24, 6837–6844 (2008)
    27. T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, T. Okano, Circ. Res. 90, E40–E48 (2002)
    28. M.M. Walczak, D.D. Popenoe, R.S. Deinhammer, B.D. Lamp, C.K. Chung, M.D. Porter, Langmuir 7, 2687–2693 (1991)
    29. C.C. Wang, Y.H. Hsiao, M.C. Huang, Ocean Eng. 36, 446–455 (2009)
    30. Y. Wang, K. Guo, W.H. Pei, Q.A. Gui, X.Q. Li, H.D. Chen, J.H. Yang, Chin. Phys. Lett. 28, 010701 (2011)
    31. B.A. Weisenberg, D.L. Mooradian, J. Biomed. Mater. Res. A 60, 283–291 (2002)
    32. B. Wildt, D. Wirtz, P.C. Searson, Nat. Methods 6, 211–213 (2009)
    33. B. Wildt, D. Wirtz, P.C. Searson, Nat. Protoc. 5, 1273–1280 (2010)
    34. C. Williams, Y. Tsuda, B.C. Isenberg, M. Yamato, T. Shimizu, T. Okano, J.Y. Wong, Adv. Mater. 21, 2161–2164 (2009)
    35. J. Yang, M. Yamato, C. Kohno, A. Nishimoto, H. Sekine, F. Fukai, T. Okano, Biomaterials 26, 6415–6422 (2005)
    36. J. Yang, M. Yamato, H. Sekine, S. Sekiya, Y. Tsuda, K. Ohashi, T. Shimizu, T. Okano, Adv. Mater. 21, 3404–3409 (2009)
    37. B. Yuan, Y. Li, D. Wang, Y.Y. Xie, Y.Y. Liu, L. Cui, F.Q. Tu, H. Li, H. Ji, W. Zhang, X.Y. Jiang, Adv. Funct. Mater. 20, 3715–3720 (2010)
  • 作者单位:1. State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, No.A35, Qinghua East Road, Haidian, Beijing 100083, People鈥檚 Republic of China2. State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130023 People鈥檚 Republic of China3. National Center for NanoScience and Technology, China, 11 Beiyitiao Road, Zhongguan Cun, Haidian, Beijing 100190, People鈥檚 Republic of China
  • 刊物类别:Engineering
  • 刊物主题:Biomedical Engineering
    Biophysics and Biomedical Physics
    Nanotechnology
    Engineering Fluid Dynamics
  • 出版者:Springer Netherlands
  • ISSN:1572-8781
文摘
Cell detachment is an ordinary cell behavior, and acts a significant role in numerous physiological processes. In addition, as massive cell groups have specific shapes in vivo, selectively controlling detachment of patterned cells is crucial for both clinical and fundamental research, because it may act as a platform for studying many processes in vitro, and also may be used for tissue engineering. However, it is difficult to first pattern cell groups into isolated islands and then to control their detachment dynamically. Herein, we developed an integrated device that could confine cell groups into various designed shapes, and selectively detach them by applying a low potential. This device contains electrode arrays (EAs) for cell pattern and detachment; and an automatic control system (ACS) connected to a computer for electrically controlling cell detachment. By microfabrication technology, EAs are fabricated on a glass substrate and isolated by surrounding insulating layer (Parylene-C). A new surface modification method is developed: within one step, oligopeptide (CCRRGDWLC) can bond to the gold surface of EAs for cell adhesion or detachment, and PLL-PEG grafts to other parts around the gold surface to resist cell adhesion simultaneously. When a low potential is applied by the ACS to the selected electrodes, cell groups on these electrodes would round up and detach from the surface. Comparing with previous methods, our method can first pattern cells and then selectively detach them. Besides, this device is easy to operate, fast response, and the detaching units are high through-put, and we believe it will be widely used in biological and medical labs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700