Microfabrication of cylindrical microfluidic channel networks for microvascular research
详细信息    查看全文
  • 作者:Zhouchun Huang (1)
    Xiang Li (1)
    Manuela Martins-Green (2)
    Yuxin Liu (1) yuxin.liu@mail.wvu.edu
  • 关键词:Reflow photoresist &#8211 ; PDMS &#8211 ; Multi ; level &#8211 ; Multi ; depth &#8211 ; Microchannels
  • 刊名:Biomedical Microdevices
  • 出版年:2012
  • 出版时间:October 2012
  • 年:2012
  • 卷:14
  • 期:5
  • 页码:873-883
  • 全文大小:680.2 KB
  • 参考文献:1. M. Abdelgawad, C. Wu, W.-Y. Chien, W.R. Geddie, M.A.S. Jewett, Y. Sun, Lab Chip 11, 545 (2011)
    2. P. Abgrall, A.M. Gue, J. Micromech. Microeng. R15, 17 (2007)
    3. A. Agarwal, N. Ranganathan, W.L. Ong, K.C. Tang, L. Yobas, Sens. Actuators A 142, 80 (2008)
    4. Application notes from MicroChemicals: Reflow of Photoresist, http://www.microchemicals.eu/technical_information
    5. H. Becker, C. Gartner, Anal. Bioanal. Chem. 390, 89 (2008)
    6. L.M. Bellan, S.P. Singh, P.W. Henderson, T.J. Porri, H.G. Craighead, J.A. Spector, Soft Matter 5, 1354 (2009)
    7. J.T. Borenstein, M.M. Tupper, P.J. Mack, E.J. Weinberg, A.S. Khalil, J. Hsiao, G. Garc铆a-Carde帽a, Biomed. Microdevices 12, 71 (2010)
    8. J.P. Camp, T. Stokol, M.L. Shuler, Biomed. Microdevices 10, 179 (2008)
    9. Y.-C. Chen, G.-Y. Chen, Y.-C. Lin, G.-J. Wang, Microfluid. Nanofluid. 9, 585 (2010)
    10. J.A. Chen, Y. Zheng, Q. Tan, Y.L. Zhang, J. Li, W.R. Geddie, M.A.S. Jewett, Y. Sun, Biomicrofluidics 5, 014113 (2011)
    11. K.M. Chrobak, D.R. Potter, J. Tien, Microvasc. Res. 71, 185–196 (2006)
    12. O.C. Colgan, G. Ferguson, N.T. Collins, R.P. Murphy, G. Meade, P.A. Cahill, P.M. Cummins, Am. J. Physiol. Heart Circ. Physiol. 292, H3190 (2007)
    13. C. Couzon, A. Duperray, C. Verdier, Eur. Biophys. J. 38, 1035 (2009)
    14. A. Crespi, Y. Gu, B. Ngamson, H.J.W.M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H.H. van den Vlekkert, P. Watts, G. Cerullo, R. Osellame, Lab Chip 10, 1167 (2010)
    15. D. Daly, R.F. Stevens, M.C. Hutley, N. Davies, Meas. Sci. Technol. 1, 759 (1990)
    16. P.F. Davies, Physiol. Rev. 75, 519–560 (1995)
    17. M.J. de Boer, R.W. Tjerkstra, J.W. Berenschot, H.V. Jansen, G.J. Burger, J.G.E. Gardeniers, M. Elwenspoek, A. van den Berg, J. Microelectromech. Syst. 9, 94 (2000)
    18. de Gennes, Rev. Mod. Phys. 57, 827–863 (1985)
    19. D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Anal. Chem. 70, 4974 (1998)
    20. H. G. Elias, VCH Publishers, New York (1997)
    21. D.R. Emerson, K. Cieslicki, X. Gu, R.W. Barber, Lab Chip 6, 447 (2006)
    22. L.K. Fiddes, N. Raz, S. Srigunapalan, Biomaterials 31, 3459 (2010)
    23. A.B. Fisher, S. Chien, A.I. Barakat, R.M. Nerem, Am. J. Physiol. Lung Cell. Mol. Physiol. 281(3), L529 (2001)
    24. Y. C. Fung, New York, NY: Springer; (1997)
    25. V.V. Gafiychuk, I.A. Lubashevsky, J. Theor. Biol. 212, 1 (2001)
    26. A. Gnasso, C. Carallo, C. Irace, V. Spagnuolo, G. De Novara, P.L. Mattioli, A. Pujia, Circulation 94, 3257–3262 (1996)
    27. T.R. Jay, M.B. Stern, Opt. Eng. 33, 3552–3555 (1994)
    28. T. Kadohama, N. Akasaka, K. Nishimura, Y. Hoshino, T. Sasajima, B.E. Sumpio, Endothelium 13, 43 (2006)
    29. S. Kaihara, J. Borenstein, R. Koka, S. Lalan, E.R. Ochoa, M. Ravens, H. Pien, B. Cunningham, J.P. Vacanti, Tissue Eng. 6, 105 (2000)
    30. A. Kamiya, R. Bukhari, T. Togawa, Bull. Math. Biol. 46, 127–137 (1984)
    31. J. Koskela, Master's thesis, Tampereen teknillinen yliopisto. (2010)
    32. M. LaBarbera, Science 249, 992–1000 (1990)
    33. T.G. Leong, A.M. Zarafshar, D.H. Gracias, Small 6, 792 (2010)
    34. D. Lim, Y. Kamotani, B. Cho, J. Mazumder, S. Takayama, Lab Chip 3, 318 (2003)
    35. R.H. Liu, M.A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R.J. Adrian, H. Aref, D.J. Beebe, J. Microelectromech. Syst. 9, 190 (2000)
    36. H. Lu, L.Y. Koo, W.M. Wang, D.A. Lauffenburger, L.G. Griffith, K.F. Jensen, Anal. Chem. 76, 5257 (2004)
    37. A.M. Malek, S.L. Alper, S. Izumo, JAMA 282(21), 2035–2042 (1999)
    38. V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, P.L. Cavallotti, Appl. Phys. Lett. 88, 191107 (2006)
    39. J.A. McCann, S.D. Peterson, M.W. Plesniak, T.J. Webster, K.M. Haberstroh, Ann. Biomed. Eng. 33, 328 (2005)
    40. A. Meeson, M. Palmer, M. Calfon, R. Lang, Development 122, 3929 (1996)
    41. C.D. Murray, Proc Natl Acad Sci USA 12, 207 (1926a)
    42. C.D. Murray, J. Gen. Physiol. 9, 835 (1926b)
    43. R.M. Nerem, R.W. Alexander, D.C. Chappell, R.M. Medford, S.E. Varner, W.R. Taylor, Am. J. Med. Sci. 316(3), 169 (1998)
    44. F.T. O’Neill, J.T. Sheridan, Optik 113, 391 (2002)
    45. C.M. Potter, M.H. Lundberg, L.S. Harrington, C.M. Warboys, T.D. Warner, R.E. Berson, A.V. Moshkov, J. Gorelik, P.D. Weinberg, J.A. Mitchell, Arterioscler. Thromb. Vasc. Biol. 31, 384 (2011)
    46. G.M. Riha, P.H. Lin, A.B. Lumsden, Q. Yao, C. Chen, Ann. Biomed. Eng. 33, 772 (2005)
    47. I. Rodriguez, P. Spicar-Mihalic, C.L. Kuyper, G.S. Fiorini, D.T. Chiu, Anal. Chim. Acta 496, 205 (2003)
    48. W. Schaper, Circulation 104, 1994 (2001)
    49. A. Schilling, R. Merz, C. Ossmann, H.P. Herzig, Opt. Eng. 39, 2171–2176 (2000)
    50. K. Sekimoto, R. Oguma, K. Kawasaki, Ann. Phys. 176, 359–392 (1987)
    51. C.T. Seo, C.H. Bae, D.S. Eun, J.K. Shin, J.H. Lee, Jpn. J. Appl. Phys. 43, 7773 (2004)
    52. J. Shao, L. Wu, J. Wu, Y. Zheng, H. Zhao, Q. Jin, J. Zhao, Lab Chip 9, 3118 (2009)
    53. T.F. Sherman, J. Gen. Physiol. 78, a 431 (1981)
    54. S.S. Shevkoplyas, S.C. Gifford, T. Yoshida, M.W. Bitensky, Microvasc. Res. 65, 132 (2003)
    55. S.H. Song, C.K. Lee, T.J. Kim, I.C. Shin, S.C. Jun, H.I. Jung, Microfluid. Nanofluid. 9, 533 (2010)
    56. A.F. Stalder, Z. Liu, J. Hennig, J.G. Korvink, K.C. Li, and M. Markl, Part 1, 27-38, Springer Science (2011)
    57. J. Surapisitchat, R.J. Hoefen, X. Pi, M. Yoshizumi, C. Yan, B.C. Berk, Proc. Natl. Acad. Sci. U. S. A. 98, 6476 (2001)
    58. J.M. Tarbell, Cardiovasc. Res. 87, 320 (2010)
    59. N. Van Royen, J.J. Piek, W. Schaper, C. Bode, I. Buschmann, J. Nucl. Cardiol. 8, 687 (2001)
    60. O.V. Voinov, Jour. Appl. Mech. Tech. Phys. 40, 86–92 (1999)
    61. G.-J. Wang, K.-H. Ho, S.-H. Hsu, K.-P. Wang, Biomed. Microdevices 9, 657 (2007)
    62. E. Warabi, Y. Wada, H. Kajiwara, M. Kobayashi, N. Koshiba, T. Hisada, M. Shibata, J. Ando, M. Tsuchiya, T. Kodama, N. Noguchi, Free Radic. Biol. Med. 37, 682 (2004)
    63. G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, D.E. Ingber, Annu. Rev. Biomed. Eng. 3, 335 (2001)
    64. M.E. Wilson, N. Kota, Y.T. Kim, Y. Wang, D.B. Stolz, P.R. LeDuc, O.B. Ozdoganlar, Lab Chip 11, 1550 (2011)
    65. C.J. World, G. Garin, B. Berk, Curr. Atheroscler. Rep. 8, 240 (2006)
    66. Y. Xia, G.M. Whiteside, Annu. Rev. Mater. Sci. 28, 153 (1998)
    67. B. Young, J. W. Heath, Wheater’s functional histology: A Text and Colour Atlas, 4th edn. (Churchill livingstone, 2000)
    68. M. Zamir, J.A. Medeiros, J. Gen. Physiol. 79, 353 (1982)
    69. Y. Zeng, T.-S. Lee, P. Yu, P. Roy, H.-T. Low, J. Biomech. Eng. 128, 185 (2006)
  • 作者单位:1. Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA2. Department of Cell Biology and Neuroscience, University of California at Riverside, Riverside, CA 92521, USA
  • ISSN:1572-8781
文摘
Current methods for formation of microvascular channel scaffolds are limited with non-circular channel cross-sections, complicated fabrication, and less flexibility in microchannel network design. To address current limitations in the creation of engineered microvascular channels with complex three-dimensional (3-D) geometries in the shape of microvessels, we have developed a reproducible, cost-effective, and flexible micromanufacturing process combined with photolithographic reflowable photoresist and soft lithography techniques to fabricate cylindrical microchannel and networks. A positive reflowable photoresist AZ P4620 was used to fabricate a master microchannel mold with semi-circular cross-sections. By the alignment and bonding of two polydimethylsiloxane (PDMS) microchannels replicated from the master mold together, a cylindrical microchannel or microchannel network was created. Further examination of the channel dimensions and surface profiles at different branching levels showed that the shape of the microfluidic channel was well approximated by a semi-circular surface, and a multi-level, multi-depth channel network was created. In addition, a computational fluidic dynamics (CFD) model was used to simulate shear flows and corresponding pressure distributions inside of the microchannel and channel network based on the dimensions of the fabricated channels. The fabricated multi-depth cylindrical microchannel network can provide platforms for the investigation of microvascular cells growing inside of cylindrical channels under shear flows and lumen pressures, and work as scaffolds for the investigation of morphogenesis and tubulogenesis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700