Cardiogenic Regulation of Stem-Cell Electrical Properties in a Laser-Patterned Biochip
详细信息    查看全文
  • 作者:Zhen Ma (1)
    Qiuying Liu (12)
    Honghai Liu (1)
    Huaxiao Yang (1)
    Julie X. Yun (1)
    Meifeng Xu (3)
    Carol A. Eisenberg (4)
    Thomas K. Borg (5)
    Roger Markwald (5)
    Bruce Z. Gao (1) zgao@clemson.edu
  • 关键词:Microenvironment &#8211 ; Laser guidance &#8211 ; Biochip &#8211 ; Electrical coupling &#8211 ; Cell contact
  • 刊名:Cellular and Molecular Bioengineering
  • 出版年:2012
  • 出版时间:September 2012
  • 年:2012
  • 卷:5
  • 期:3
  • 页码:327-336
  • 全文大小:636.0 KB
  • 参考文献:1. Borg, K. T., W. Burgess, L. Terracio, and T. K. Borg. Expression of metalloproteases by cardiac myocytes and fibroblasts in vitro. Cardiovasc. Pathol. 6(5):261–269, 1997.
    2. Bray, M. A., S. P. Sheehy, and K. K. Parker. Sarcomere alignment is regulated by myocyte shape. Cell Motil. Cytoskeleton 65(8):641–651, 2008.
    3. Di Carlo, D., L. Y. Wu, and L. P. Lee. Dynamic single cell culture array. Lab. Chip 6(11):1445–1449, 2006.
    4. Fukuda, K. Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering. Artif. Organs. 25(3):187–193, 2001.
    5. Fukuhara, S., S. Tomita, S. Yamashiro, T. Morisaki, C. Yutani, S. Kitamura, and T. Nakatani. Direct cell–cell interaction of cardiomyocytes is key for bone marrow stromal cells to go into cardiac lineage in vitro. J. Thorac. Cardiovasc. Surg. 125(6):1470–1480, 2003.
    6. Gumbiner, B. M. Regulation of cadherin-mediated adhesion in morphogenesis. Nat. Rev. Mol. Cell Biol. 6(8):622–634, 2005.
    7. Joggerst, S. J., and A. K. Hatzopoulos. Stem cell therapy for cardiac repair: benefits and barriers. Expert Rev. Mol. Med. 11:e20, 2009.
    8. Li, G. R., X. L. Deng, H. Sun, S. S. Chung, H. F. Tse, and C. P. Lau. Ion channels in mesenchymal stem cells from rat bone marrow. Stem Cells 24(6):1519–1528, 2006.
    9. Odde, D. J., and M. J. Renn. Laser-guided direct writing for applications in biotechnology. Trend Biotechnol. 17(10):385–389, 1999.
    10. Pedrotty, D. M., R. Y. Klinger, N. Badie, S. Hinds, A. Kardashian, and N. Bursac. Structural coupling of cardiomyocytes and noncardiomyocytes: quantitative comparisons using a novel micropatterned cell pair assay. Am. J. Physiol. Heart Circ. Physiol. 295(1):H390–H400, 2008.
    11. Peter, N. S., and A. L. Wit. Gap junction remodeling in infarction: does it play a role in arrhythmogenesis? J. Cardiovasc. Electrophysiol. 11:488–490, 2000.
    12. Pirlo, R. K., Z. Ma, A. Sweeney, H. Liu, J. X. Yun, X. Peng, X. Yuan, G. X. Guo, and B. Z. Gao. Laser-guided cell micropatterning system. Rev. Sci. Instrum. 82(1):013708, 2011.
    13. Pirlo, R. K., A. J. Sweeney, B. R. Ringeisen, M. Kindy, and B. Z. Gao. Biochip/laser cell deposition system to assess polarized axonal growth from single neurons and neuronglia pairs in microchannels with novel asymmetrical geometries. Biomicrofluidics 5(1):13408, 2011.
    14. Revzin, A., K. Sekine, A. Sin, R. G. Tompkins, and M. Toner. Development of a microfabricated cytometry platform for characterization and sorting of individual leukocytes. Lab. Chip 5(1):30–37, 2005.
    15. Rosenbalm, T. N., R. Owens, D. Bakken, and B. Z. Gao. Cell viability test after laser guidance. Proc. SPIE 6084:299–306, 2006.
    16. Thery, M., V. Racine, A. Pepin, M. Piel, Y. Chen, J. B. Sibarita, and M. Bornens. The extracellular matrix guides the orientation of the cell division axis. Nat. Cell Biol. 7(10):947–953, 2005.
    17. Tufan, H., L. Cleemann, M. Sussman, and M. Morad. Ca2+ transients in Pim-1 transfected cardiac stem cells co-cultured with rat neonatal cardiomyocytes. Biophys. J. 98(3):134a, 2010.
    18. Wei, C. J., X. Xu, and C. W. Lo. Connexins and cell signaling in development and disease. Annu. Rev. Cell Dev. Biol. 20:811–838, 2004.
    19. Xu, M., M. Wani, Y. S. Dai, J. Wang, M. Yan, A. Ayub, and M. Ashraf. Differentiation of bone marrow stromal cells into the cardiac phenotype requires intercellular communication with myocytes. Circulation 110(17):2658–2665, 2004.
    20. Yoon, J., W. J. Shim, Y. M. Ro, and D. S. Lim. Transdifferentiation of mesenchymal stem cells into cardiomyocytes by direct cell-to-cell contact with neonatal cardiomyocyte but not adult cardiomyocytes. Ann. Hematol. 84(11):715–721, 2005.
  • 作者单位:1. Department of Bioengineering, COMSET, Clemson University, 201-5 Rhodes Hall, Clemson, SC 29634, USA2. Biomedical R&D Center, Jinan University, Guangzhou, People鈥檚 Republic of China3. Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH, USA4. New York Medical College/Westchester Medical Center Stem Cell Laboratory, New York Medical College, Valhalla, NY, USA5. Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
  • ISSN:1865-5033
文摘
Normal cardiomyocytes are highly dependent on the functional expression of ion channels to form action potentials and electrical coupling with other cells. To fully determine the scientific and therapeutic potential of stem cells for cardiovascular-disease treatment, it is necessary to assess comprehensively the regulation of stem-cell electrical properties during stem cell-cardiomyocyte interaction. It has been reported in the literature that contact with native cardiomyocytes induced and regulated stem-cell cardiogenic differentiation. However, in conventional cell-culture models, the importance of cell–cell contact for stem-cell functional coupling with cardiomyocytes has not been elucidated due to insufficient control of the cell-contact mode of individual cells. Using microfabrication and laser-guided cell micropatterning techniques, we created two biochips with contact-promotive and -preventive microenvironments to systematically study the effect of contact on cardiogenic regulation of stem-cell electrical properties. In contact-promotive biochips, connexin 43 expression was upregulated and relocated to the junction area between one stem cell and one cardiomyocyte. Only stem cells in contact with cardiomyocytes were induced by adjacent cardiomyocytes to acquire electrophysiological properties for action-potential formation similar to that of a cardiomyocyte.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700