Neuronal Damage Using Fluoro-Jade B Histofluorescence and Gliosis in the Striatum After Various Durations of Transient Cerebral Ischemia in Gerbils
详细信息    查看全文
  • 作者:Taek Geun Ohk (1)
    Ki-Yeon Yoo (2)
    Seung Min Park (1)
    Bich Na Shin (3)
    In Hye Kim (3)
    Joon Ha Park (3)
    Hee Cheol Ahn (1)
    Young Joo Lee (4)
    Myong Jo Kim (5)
    Tae Young Kim (6)
    Moo-Ho Won (3) mhwon@kangwon.ac.kr
    Jun Hwi Cho (7) cjhmd@kangwon.ac.kr
  • 关键词:Ischemia&#8211 ; reperfusion &#8211 ; Ischemic duration &#8211 ; Fluoro ; Jade B &#8211 ; Astrocytes &#8211 ; Microglia
  • 刊名:Neurochemical Research
  • 出版年:2012
  • 出版时间:April 2012
  • 年:2012
  • 卷:37
  • 期:4
  • 页码:826-834
  • 全文大小:807.0 KB
  • 参考文献:1. Belayev L, Busto R, Zhao W et al (1999) Middle cerebral artery occlusion in the mouse by intraluminal suture coated with poly-l-lysine: neurological and histological validation. Brain Res 833:181–190
    2. Hu Z, Zeng L, Xie L et al (2007) Morphological alteration of Golgi apparatus and subcellular compartmentalization of TGF-beta1 in Golgi apparatus in gerbils following transient forebrain ischemia. Neurochem Res 32:1927–1931
    3. Kirino T, Tamura A, Sano K (1984) Delayed neuronal death in the rat hippocampus following transient forebrain ischemia. Acta Neuropathol 64:139–147
    4. Schmidt-Kastner R, Ophoff BG, Hossmann KA (1990) Pattern of neuronal vulnerability in the cat hippocampus after one hour of global cerebral ischemia. Acta Neuropathol 79:444–455
    5. Bederson JB, Pitts LH, Tsuji M et al (1986) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17:472–476
    6. Cheng FC, Wang J, Yang DY (2000) A dual-probe microdialysis study in simultaneously monitoring extracellular pyruvate, lactate, and biogenic amines in gerbil striata during unilateral cerebral ischemia. Neurochem Res 25:1089–1094
    7. Longa EZ, Weinstein PR, Carlson S et al (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91
    8. Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10:267–272
    9. Ordy JM, Wengenack TM, Bialobok P et al (1993) Selective vulnerability and early progression of hippocampal CA1 pyramidal cell degeneration and GFAP-positive astrocyte reactivity in the rat four-vessel occlusion model of transient global ischemia. Exp Neurol 119:128–139
    10. Pennypacker KR, Hernandez H, Benkovic S et al (1999) Induction of presenilins in the rat brain after middle cerebral arterial occlusion. Brain Res Bull 48:539–543
    11. Zhang Z, Zhang RL, Jiang Q et al (1997) A new rat model of thrombotic focal cerebral ischemia. J Cereb Blood Flow Metab 17:123–135
    12. Block F (1999) Global ischemia and behavioural deficits. Prog Neurobiol 58:279–295
    13. Schmidt-Kastner R, Freund TF (1991) Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40:599–636
    14. Kirino T, Sano K (1984) Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol 62:201–208
    15. Kiss JP, Zsilla G, Vizi ES (2004) Inhibitory effect of nitric oxide on dopamine transporters: interneuronal communication without receptors. Neurochem Int 45:485–489
    16. Yoshioka H, Niizuma K, Katsu M et al (2011) Consistent injury to medium spiny neurons and white matter in the mouse striatum after prolonged transient global cerebral ischemia. J Neurotrauma 28:649–660
    17. Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–498
    18. Crain BJ, Westerkam WD, Harrison AH et al (1988) Selective neuronal death after transient forebrain ischemia in the Mongolian gerbil: a silver impregnation study. Neuroscience 27:387–402
    19. Terashima T, Namura S, Hoshimaru M et al (1998) Consistent injury in the striatum of C57BL/6 mice after transient bilateral common carotid artery occlusion. Neurosurgery 43:900–907 Discussion 907–908
    20. Yan BC, Choi JH, Yoo KY et al (2011) Leptin’s neuroprotective action in experimental transient ischemic damage of the gerbil hippocampus is linked to altered leptin receptor immunoreactivity. J Neurol Sci 303:100–108
    21. Candelario-Jalil E, Alvarez D, Merino N et al (2003) Delayed treatment with nimesulide reduces measures of oxidative stress following global ischemic brain injury in gerbils. Neurosci Res 47:245–253
    22. Schmued LC, Hopkins KJ (2000) Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 874:123–130
    23. Cho AK, Melega WP, Kuczenski R et al (1999) Caudate-putamen dopamine and stereotypy response profiles after intravenous and subcutaneous amphetamine. Synapse 31:125–133
    24. Gong W, Neill DB, Lynn M et al (1999) Dopamine D1/D2 agonists injected into nucleus accumbens and ventral pallidum differentially affect locomotor activity depending on site. Neuroscience 93:1349–1358
    25. Braida D, Pozzi M, Sala M (2000) CP 55, 940 protects against ischemia-induced electroencephalographic flattening and hyperlocomotion in Mongolian gerbils. Neurosci Lett 296:69–72
    26. Araki H, Yamamoto T, Kobayashi Y et al (2002) Effect of methamphetamine and imipramine on cerebral ischemia-induced hyperactivity in Mongolian gerbils. Jpn J Pharmacol 88:293–299
    27. Colbourne F, Auer RN, Sutherland GR (1998) Characterization of postischemic behavioral deficits in gerbils with and without hypothermic neuroprotection. Brain Res 803:69–78
    28. Katsuta K, Umemura K, Ueyama N et al (2003) Pharmacological evidence for a correlation between hippocampal CA1 cell damage and hyperlocomotion following global cerebral ischemia in gerbils. Eur J Pharmacol 467:103–109
    29. Restivo L, Middei S, Mingfu L et al (2004) Potentiation of ischemia-related behavioral alterations by electro-acupuncture in gerbils. Funct Neurol 19:19–23
    30. Boor PJ, Reynolds ES (1977) A simple planimetric method for determination of left ventricular mass and necrotic myocardial mass in postmortem hearts. Am J Clin Pathol 68:387–392
    31. Cox JL, McLaughlin VW, Flowers NC et al (1968) The ischemic zone surrounding acute myocardial infarction. Its morphology as detected by dehydrogenase staining. Am Heart J 76:650–659
    32. Popp A, Jaenisch N, Witte OW et al (2009) Identification of ischemic regions in a rat model of stroke. PLoS One 4:e4764
    33. Nachlas MM, Shnitka TK (1963) Macroscopic identification of early myocardial infarcts by alterations in dehydrogenase activity. Am J Pathol 42:379–405
    34. Ito U, Spatz M, Walker JT Jr et al (1975) Experimental cerebral ischemia in mongolian gerbils. I. Light microscopic observations. Acta Neuropathol 32:209–223
    35. Kirino T (2000) Delayed neuronal death. Neuropathology 20(Suppl):S95–S97
    36. Giulian D, Vaca K (1993) Inflammatory glia mediate delayed neuronal damage after ischemia in the central nervous system. Stroke 24:I84–I90
    37. Ridet JL, Malhotra SK, Privat A et al (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577
    38. Balasingam V, Yong VW (1996) Attenuation of astroglial reactivity by interleukin-10. J Neurosci 16:2945–2955
    39. Smith GM, Hale JH (1997) Macrophage/Microglia regulation of astrocytic tenascin: synergistic action of transforming growth factor-beta and basic fibroblast growth factor. J Neurosci 17:9624–9633
    40. Yong VW, Moumdjian R, Yong FP et al (1991) Gamma-interferon promotes proliferation of adult human astrocytes in vitro and reactive gliosis in the adult mouse brain in vivo. Proc Natl Acad Sci USA 88:7016–7020
    41. Kraig RP, Dong LM, Thisted R et al (1991) Spreading depression increases immunohistochemical staining of glial fibrillary acidic protein. J Neurosci 11:2187–2198
    42. Lascola C, Kraig RP (1997) Astroglial acid-base dynamics in hyperglycemic and normoglycemic global ischemia. Neurosci Biobehav Rev 21:143–150
    43. Matsushima K, Schmidt-Kastner R, Hogan MJ et al (1998) Cortical spreading depression activates trophic factor expression in neurons and astrocytes and protects against subsequent focal brain ischemia. Brain Res 807:47–60
    44. Hashimoto M, Nitta A, Fukumitsu H et al (2005) Involvement of glial cell line-derived neurotrophic factor in activation processes of rodent macrophages. J Neurosci Res 79:476–487
    45. Laurenzi MA, Arcuri C, Rossi R et al (2001) Effects of microenvironment on morphology and function of the microglial cell line BV-2. Neurochem Res 26:1209–1216
    46. Hailer NP, Jarhult JD, Nitsch R (1996) Resting microglial cells in vitro: analysis of morphology and adhesion molecule expression in organotypic hippocampal slice cultures. Glia 18:319–331
    47. Schwartz M, Butovsky O, Bruck W et al (2006) Microglial phenotype: is the commitment reversible? Trends Neurosci 29:68–74
    48. Mabuchi T, Kitagawa K, Ohtsuki T et al (2000) Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke 31:1735–1743
    49. Stoll G, Jander S, Schroeter M (1998) Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol 56:149–171
    50. Sugawara T, Lewen A, Noshita N et al (2002) Effects of global ischemia duration on neuronal, astroglial, oligodendroglial, and microglial reactions in the vulnerable hippocampal CA1 subregion in rats. J Neurotrauma 19:85–98
  • 作者单位:1. Department of Emergency Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, 431-070 South Korea2. Department of Oral Anatomy, College of Dentistry, Gangneung-Wonju National University, Gangneung, 210-702 South Korea3. Department of Neurobiology, and Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea4. Department of Emergency Medicine, Seoul Hospital, College of Medicine, Sooncheonhyang University, Seoul, 140-743 South Korea5. Oriental Bio-herb Research Institute, Kangwon National University, Chuncheon, 200-701 South Korea6. Fermentation & Food Processing, Department of Korean Food Research for Globalization, NAAS, RDA, Suwon, 441-707 South Korea7. Department of Emergency Medicine, and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Biochemistry
    Neurology
  • 出版者:Springer Netherlands
  • ISSN:1573-6903
文摘
Ischemic damage occurs well in vulnerable regions of the brain, including the hippocampus and striatum. In the present study, we examined neuronal damage/death and glial changes in the striatum 4 days after 5, 10, 15 and 20 min of transient cerebral ischemia using the gerbil. Spontaneous motor activity was increased with the duration time of ischemia–reperfusion (I-R). To examine neuronal damage, we used Fluoro-Jade B (F-J B, a marker for neuronal degeneration) histofluorescence staining. F-J B positive cells were detected only in the 20 min ischemia-group, not in the other groups. In addition, we examined gliosis of astrocytes and microglia using anti-glial fibrillary acidic protein (GFAP) and anti- ionized calcium-binding adapter molecule 1 (Iba-1), respectively. In the 5 min ischemia-group, GFAP-immunoreactive astrocytes were distinctively increased in number, and the immunoreactivity was stronger than that in the sham-group. In the 10, 15 and 20 min ischemia-groups, GFAP-immunoreactivity was more increased with the duration of I-R. On the other hand, the immunoreactivity and the number of Iba-1-immunoreactive microglia were distinctively increased in the 5 and 10 min ischemia-groups. In the 15 min ischemia-group, cell bodies of microglia were largest, and the immunoreactivity was highest; however, in the 20 min ischemia-group, the immunoreactivity was low compared to the 15 min ischemia-group. The results of western blotting for GFAP and Iba-1 were similar to the immunohistochemical data. In brief, these findings showed that neuronal death could be detected only in the 20 min ischemia-group 4 days after I-R, and the change pattern of astrocytes and microglia were apparently different according to the duration time of I-R.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700