Unusual pre-oxidized polyacrylonitrile fibres behaviour against their activation with CO2: carbonization effect
详细信息    查看全文
  • 作者:G. Trautwein ; M. Plaza-Recobert ; J. Alcañiz-Monge
  • 关键词:Polyacrylonitrile carbon fibres ; Activated carbon fibres ; Reactivity ; CO2 activation ; Microporosity
  • 刊名:Adsorption
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:22
  • 期:2
  • 页码:223-231
  • 全文大小:1,036 KB
  • 参考文献:Alcañiz-Monge, J., Cazorla-Amorós, D., Linares-Solano, A., Oya, A., Sakamoto, A., Hoshi, K.: Preparation of general purpose carbon fibres from coal tar pitches with low softening point. Carbon 35, 1079–1087 (1997a)CrossRef
    Alcañiz-Monge, J., Cazorla-Amorós, D., Linares-Solano, A., Yoshida, S., Oya, A.: Effect of the activating gas on tensile strength and pore structure of pitch-based carbon fibres. Carbon 32, 1277–1283 (1994)CrossRef
    Alcañiz-Monge, J., Cazorla-Amorós, D., Linares-Solano, A.: Production of activated carbons: use of CO2 versus H2O as activating agent. A reply to a letter from P. L. Walker Jr. Carbon 35, 1665–1668 (1997b)CrossRef
    Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938)CrossRef
    Boehm, H.P., Voll, M.: Basische Oberflächenoxide auf Kohlenstoff—I. Adsorption von säuren. Carbon 8, 227 (1970)CrossRef
    Cazorla-Amorós, D., Alcañiz-Monge, J., Linares-Solano, A.: Characterization of activated carbon fibres by CO2 adsorption. Langmuir 12, 2820 (1996)CrossRef
    Chiang, Y.C., Lee, C.Y., Lee, H.C.: Surface chemistry of polyacrylonitrile- and rayon-based activated carbon fibres after post-heat treatment. Mater. Chem. Phys. 101, 199–210 (2007)CrossRef
    Donnet, J.B., Rebouillat, S., Wang, T.K., Peng, J.C.M.: Carbon Fibres, 3rd edn. Marcel Dekker, New York (1998)
    Dubinin, M.M.: Chemistry and Physics of Carbon, vol. 2. Marcel Dekker, New York (1966)
    Fitzer, E., Frohs, W., Heine, M.: Optimization of stabilization and carbonization treatment of PAN fibres and structural characterization of the resulting carbon fibres. Carbon 24, 387–395 (1986)CrossRef
    Freeman, J., Gimblett, F.G.R., Sing, K.I.W.: Studies of activated charcoal cloth. V. Modification of pore structure by impregnation with certain transition metal salts and oxo-complexes. Carbon 27, 85–93 (1989)CrossRef
    Froment, G.F.: Coke formation in the thermal cracking of hydrocarbons. Rev. Chem. Eng. 6, 293–328 (1990)
    Jing, M., Wang, C., Wang, Q., Bai, Y., Zhu, B.: Chemical structure evolution and mechanism during pre-carbonization of PAN-based stabilized fibre in the temperature range of 350–600°C. Polym. Degrad. Stab. 92, 1737–1742 (2007)CrossRef
    Ko, T.H., Chiranairadul, P., Lu, C.K., Lin, C.H.: The effects of activation by carbon dioxide on the mechanical properties and structure of PAN-based activated carbon fibres. Carbon 30, 647–655 (1992)CrossRef
    Mang, D., Boehm, H.P., Stanczyk, K., Marsh, H.: Inhibiting effect of incorporated nitrogen on the oxidation of microcrystalline carbons. Carbon 30, 391–398 (1992)CrossRef
    Mcnair, R.N., Arons, G.N.: Carbon Adsorption Handbook, Cap. 22, 819. Ann Arbor Science Pub., Ann Arbor (1977)
    Megaritis, A., Messenböck, R.C., Collot, A.G., Zhuo, Y., Dugwell, D.R., Kandiyoti, R.: Internal consistency of coal gasification reactivities determined in bench-scale reactors: effect of pyrolysis conditions on char reactivities under high-pressure CO2. Fuel 77, 1411–1420 (1998)CrossRef
    Messenböck, R.C., Dugwell, D.R., Kandiyoti, R.: CO2 and steam-gasification in a high-pressure wire-mesh reactor: the reactivity of Daw Mill coal and combustion reactivity of its chars. Fuel 78, 781–793 (1999)CrossRef
    Mittal, J., Konno, H., Inagaki, M., Bahl, O.P.: Denitrogenation behavior and tensile strength increase during carbonization of stabilized pan fibres. Carbon 36, 1327–1330 (1998)CrossRef
    Mochida, I., Korai, Y., Shirahama, M., Kawano, S., Hada, T., Seo, Y., Yoshikawa, M., Yasutake, A.: Removal of SOx and NO x  over activated carbon fibres. Carbon 38, 227–239 (2000)CrossRef
    Park, J., Kim, K.D.: Influence of activation temperature on adsorption characteristics of activated carbon fibre composites. Carbon 39, 1741–1746 (2001)CrossRef
    Rahaman, M.S.A., Ismail, A.F., Mustafa, A.: A review of heat treatment on polyacrylonitrile fibre. Polym. Degrad. Stab. 92, 1421–1432 (2007)CrossRef
    Raymundo-Piñero, E., Cazorla-Amorós, D., Linares-Solano, A.: The role of different nitrogen functional groups on the removal of SO2 from flue gases by N-doped activated carbon powders and fibres. Carbon 41, 1925–1932 (2003)CrossRef
    Raymundo-Piñero, E., Cazorla-Amorós, D., Salinas-Martínez de Lecea, C., Linares-Solano, A.: Factors controling the SO2 removal by porous carbons: relevance of the SO2 oxidation step. Carbon 38, 335–344 (2000)CrossRef
    Ryu, S.K.: Porosity of activated carbon fibre. High Temp. High Press. 22, 345–354 (1990)
    Ryu, S.K., Jin, H.K., Gondy, D., Pusset, N., Ehrburger, P.: Activation of carbon fibres by steam and carbon dioxide. Carbon 31, 841–842 (1993a)CrossRef
    Ryu, S.K., Lee, J.K., Lee, D.W., Pusset, N., Ehrburger, P.: Adsorption Characteristics of Activated Pitch-Based Carbon Fibres. Carbon ‘90, Paris, France, July 16–20 (1990)
    Ryu, S.K., Ko, K.Y., Rhee, B.S., Ehrburger, P.: Density and Pore Volume of Activated Carbon Fibres. Proceedings of 21st Biennial Conference on Carbon, June 13–18, Buffalo, USA, 623 (1993b)
    Scofield, J.H.: Hartree–Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom. 8, 129–137 (1976)CrossRef
    Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603 (1985)CrossRef
    Song, Y., Qiao, W., Yoon, S.H., Mochida, I., Guo, Q., Liu, L.: Removal of formaldehyde at low concentration using various activated carbon fibres. J. Appl. Polym. Sci. 106, 2151–2157 (2007)CrossRef
    Suzuki, M.: Activated carbon fibre: fundamentals and applications. Carbon 32, 577–586 (1994)CrossRef
    Tavanai, H., Jalili, R., Morshed, M.: Effects of fibre diameter and CO2 activation temperature on the pore characteristics of polyacrylonitrile based activated carbon nanofibres. Surf. Interface Anal. 41, 814–819 (2009)CrossRef
    Vilaplana-Ortego, E., Maciá-Agulló, J.A., Alcañiz-Monge, J., Cazorla-Amorós, D., Linares-Solano, A.: Comparative study of the micropore development on physical activation of carbon fibres from coal tar and petroleum pitches. Micropor. Mesopor. Mater. 112, 125–132 (2008)CrossRef
    Walker, P.L., Rusinko, F., Austin, L.G.: Gas reactions of carbon. Adv. Catal. 11, 133–221 (1959)
    Wang, T., Sherwood, P.M.A.: X-ray photoelectron spectroscopic studies of carbon fibre surfaces. 17. Interfacial interactions between phenolic resin and carbon fibres electrochemically oxidized in nitric acid and phosphoric acid solutions, and their effect on oxidation behavior. Chem. Mater. 6, 788–795 (1994)CrossRef
    Wang, P.H., Yue, Z.R., Liu, J.: Conversion of polyacrylonitrile fibres to activated carbon-fibres—effect of activation. J. Appl. Polym. Sci. 60, 923–929 (1996)CrossRef
    Wangxi, Z., Jie, L., Gang, W.: Evolution of structure and properties of PAN precursors during their conversion to carbon fibres. Carbon 41, 2805–2812 (2003)CrossRef
    Watt, W.: Chemistry and physics of conversion of PAN fibres into high-modulus carbon fibre. In: Watt, W., Perov, B.B. (eds.) Strong Fibre, vol. 1, p. 327. Elsevier Science Publishers, Netherlands (1985)
    Yusofa, N., Ismail, A.F.: Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fibre and activated carbon fibre: a review. J. Anal. Appl. Pyrol. 93, 1–13 (2012)CrossRef
    Zaini, M.A.A., Amano, Y., Machida, M.: Adsorption of heavy metals onto activated carbons derived from polyacrylonitrile fibre. J. Hazard. Mater. 180, 552–560 (2010)CrossRef
  • 作者单位:G. Trautwein (1)
    M. Plaza-Recobert (1)
    J. Alcañiz-Monge (1)

    1. Dpto. Química Inorgánica, Universidad de Alicante, 03080, Alicante, Spain
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Surfaces and Interfaces and Thin Films
    Industrial Chemistry and Chemical Engineering
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Netherlands
  • ISSN:1572-8757
文摘
The CF-PAN activation process with CO2 has been analysed. Activation of CF-PAN with CO2 leads to unusual results both, activation percentage evolution over the time and generated porosity development. In the explanation has been highlighted the role of the carbonization step in the CF-PAN activation process. The analysed results point to the fact that part of the released nitrogen-containing compounds during PANOX fibres carbonization are deposited on the CF surface, which affects to carbonized PAN fibres, decreasing actives sites, or acting as inhibitors of the gasification reaction. Keywords Polyacrylonitrile carbon fibres Activated carbon fibres Reactivity CO2 activation Microporosity

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700