Preparation and adsorption properties of aerocellulose-derived activated carbon monoliths
详细信息    查看全文
  • 作者:Rohan S. Dassanayake ; Chamila Gunathilake ; Tanya Jackson ; Mietek Jaroniec…
  • 关键词:Biopolymers ; Cellulose ; Aerogels ; Sol–gel process ; CO2 sorption
  • 刊名:Cellulose
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:23
  • 期:2
  • 页码:1363-1374
  • 全文大小:1,519 KB
  • 参考文献:Abidi N, Hequet E, Cabrales L, Gannaway J, Wilkins T, Wells LW (2008) Evaluating cell wall structure and composition of developing cotton fibers using Fourier transform infrared spectroscopy and thermogravimetric analysis. J Appl Polym Sci 107(1):476–486CrossRef
    Abidi N, Cabrales L, Hequet E (2010) Fourier transform infrared spectroscopic approach to the study of the secondary cell wall development in cotton fiber. Cellulose 17(2):309–320CrossRef
    Bhati S, Mahur JS, Choubey ON, Dixit MS (2013) Surface and adsorption properties of activated carbon fabric prepared from cellulosic polymer: mixed activation method. Bull Korean Chem Soc 34(2):569–573CrossRef
    Burchell TD, Judkins RR, Rogers MR, Williams AM (1997) A novel process and material for the separation of carbon dioxide and hydrogen sulfide gas mixtures. Carbon 35(9):1279–1294CrossRef
    Burchell MJ, Graham G, Kearsley A (2006) Cosmic dust collection in aerogel. In: Annual review of earth and planetary sciences. Annu Rev Earth Planet Sci 34:385–418
    Carta D (2009) Structural and magnetic characterization of Co and Ni silicate hydroxides in bulk and in nanostructures within silica aerogels. Chem Mater 21(5):945–953CrossRef
    Choma J, Marszewski M, Osuchowski L, Jagiello J, Dziura A, Jaroniec M (2015) Adsorption properties of activated carbons prepared from waste CDs and DVDs. ACS Sustain Chem Eng 3(4):733–742CrossRef
    Cinke M, Li J, Bauschlicher CW Jr, Ricca A, Meyyappan M (2003) CO2 adsorption in single-walled carbon nanotubes. Chem Phys Lett 376(5–6):761–766CrossRef
    Czakkel O, Onyestyák G, Pilatos G, Kouvelos V, Kanellopoulos N, László K (2009) Kinetic and equilibrium separation of Co and Co2 by impregnated spherical carbons. Microporous Mesoporous Mater 120(1–2):76–83CrossRef
    D’Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49(35):6058–6082CrossRef
    Davis ME (2002) Ordered porous materials for emerging applications. Nature 417(6891):813–821CrossRef
    Dong F, Lou H, Goto M, Hirose T (1999) A new PSA process as an extension of the Petlyuk distillation concept. Sep Purif Technol 15(1):31–40CrossRef
    El Kadib A, Chimenton R, Sachse A, Fajula F, Galarneau A, Coq B (2009) Functionalized inorganic monolithic microreactors for high productivity in fine chemicals catalytic synthesis. Angew Chem Int Ed 48(27):4969–4972CrossRef
    Ello AS, de Souza LKC, Trokourey A, Jaroniec M (2013) Coconut shell-based microporous carbons for CO2 capture. Microporous Mesoporous Mater 180:280–283CrossRef
    Gavillon R, Budtova T (2008) aerocellulose: new highly porous cellulose prepared from cellulose − NaOH aqueous solutions. Biomacromolecules 9(1):269–277CrossRef
    Ge D (2009) Hydrophobic and thermal insulation properties of silica aerogel/epoxy composite. J Non-Cryst Solids 355(52–54):2610–2615CrossRef
    Gebald C, Wurzbacher JA, Tingaut P, Zimmermann T, Steinfeld A (2011) Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ Sci Technol 45(20):9101–9108CrossRef
    Gebald C, Wurzbacher JA, Tingaut P, Steinfeld A (2013) Stability of amine-functionalized cellulose during temperature-vacuum-swing cycling for CO2 capture from air. Environ Sci Technol 47(17):10063–10070CrossRef
    Gebald C, Wurzbacher JA, Borgschulte A, Zimmermann T, Steinfeld A (2014) Single-component and binary CO2 and H2O adsorption of amine-functionalized cellulose. Environ Sci Technol 48(4):2497–2504
    Górka J, Zawislak A, Choma J, Jaroniec M (2008) KOH activation of mesoporous carbons obtained by soft-templating. Carbon 46(8):1159–1161CrossRef
    Górka J, Zawislak A, Choma J, Jaroniec M (2010) Adsorption and structural properties of soft-templated mesoporous carbons obtained by carbonization at different temperatures and KOH activation. Appl Surf Sci 256(17):5187–5190CrossRef
    Gunathilake C, Jaroniec M (2014) Mesoporous organosilica with amidoxime groups for CO2 sorption. ACS Appl Mater Interfaces 6(15):13069–13078CrossRef
    Hao GP, Li WC, Qian D, Lu AH (2010) Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv Mater 22(7):853–857CrossRef
    Houghton JT, Ding Y, Griggs DJ, Noguer M, Linden PJVD, Dai X, Maskell K, Johnson CA (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, pp 1–900
    Hrubesh LW (1998) Aerogel applications. J Non-Cryst Solids 225:335–342CrossRef
    Hu X, Radosz M, Cychosz KA, Thommes M (2011) CO2-filling capacity and selectivity of carbon nanopores: synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT). Environ Sci Technol 45(16):7068–7074CrossRef
    Ilharco LM, Garcia AR, Lopes da Silva J, Vieira Ferreira LF (1997) Infrared approach to the study of adsorption on cellulose: influence of cellulose crystallinity on the adsorption of benzophenone. Langmuir 13(15):4126–4132CrossRef
    Jagiello J, Olivier J (2013a) Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation. Adsorption 19(2–4):777–783CrossRef
    Jagiello J, Olivier JP (2013b) 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 55:70–80CrossRef
    Kikkinides ES, Yang RT, Cho SH (1993) Concentration and recovery of carbon dioxide from flue gas by pressure swing adsorption. Ind Eng Chem Res 32(11):2714–2720CrossRef
    Kiso Y (1999) Adsorption properties of cyclic compounds on cellulose acetate. J Appl Polym Sci 71(10):1657–1663CrossRef
    Kistler SS (1932) Coherent expanded-aerogels. J Phys Chem 36(1):52–64CrossRef
    Knöfel C, Martin C, Hornebecq V, Llewellyn PL (2009) Study of carbon dioxide adsorption on mesoporous aminopropylsilane-functionalized silica and titania combining microcalorimetry and in situ infrared spectroscopy. J Phys Chem C 113(52):21726–21734CrossRef
    Kruk M, Jaroniec M, Sayari A (1997) Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir 13(23):6267–6273CrossRef
    Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sust Energy Rev 39:426–443CrossRef
    Li JR, Ma Y, McCarthy MC, Sculley J, Yu J, Jeong HK, Balbuena PB, Zhou HC (2011) Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord Chem Rev 255(15–16):1791–1823CrossRef
    Lively RP, Chance RR, Kelley BT, Deckman HW, Drese JH, Jones CW, Koros WJ (2009) Hollow fiber adsorbents for CO2 removal from flue gas. Ind Eng Chem Res 48(15):7314–7324CrossRef
    Lu W, Sculley JP, Yuan D, Krishna R, Zhou H-C (2013) Carbon dioxide capture from air using amine-grafted porous polymer networks. J Phys Chem C 117(8):4057–4061CrossRef
    Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Muller TE (2012) Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energ Environ Sci 5(6):7281–7305CrossRef
    Miura M (1994) Temperature-dependent adsorption/desorption behavior of lower critical solution temperature (LCST) polymers on various substrates. J Biomater Sci Polym Ed 5(6):555–568CrossRef
    Na BK, Koo KK, Eum HM, Lee H, Song H (2001) CO2 recovery from flue gas by PSA process using activated carbon. Korean J Chem Eng 18(2):220–227CrossRef
    Nandi M, Okada K, Dutta A, Bhaumik A, Maruyama J, Derks D, Uyama H (2012) Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation. Chem Commun 48(83):10283–10285CrossRef
    Oh KW (2009) Ultra-porous flexible PET/Aerogel blanket for sound absorption and thermal insulation. Fiber polym 10(5):731–737CrossRef
    Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005a) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340(15):2376–2391CrossRef
    Oh SY, Yoo DI, Shin Y, Seo G (2005b) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340(3):417–428CrossRef
    Pacheco DM, Johnson JR, Koros WJ (2012) Aminosilane-functionalized cellulosic polymer for increased carbon dioxide sorption. Ind Eng Chem Res 51(1):503–514CrossRef
    Plaza M, Pevida C, Arias B, Casal M, Martín C, Fermoso J, Rubiera F, Pis J (2009) Different Approaches for the development of low-cost CO2 adsorbents. J Environ Eng 135(6):426–432CrossRef
    Plaza MG, González AS, Pevida C, Pis JJ, Rubiera F (2012) Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications. Appl Energ 99:272–279CrossRef
    Presser V, McDonough J, Yeon S-H, Gogotsi Y (2011) Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energ Environ Sci 4(8):3059–3066CrossRef
    Rein DM, Khalfin R, Cohen Y (2012) Cellulose as a novel amphiphilic coating for oil-in-water and water-in-oil dispersions. J Colloid Interface Sci 386(1):456–463CrossRef
    Rolison DR, Dunn B (2001) Electrically conductive oxide aerogels: new materials in electrochemistry. J Mater Chem 11(4):963–980CrossRef
    Rutherford SW, Do DD (2000) Adsorption dynamics of carbon dioxide on a carbon molecular sieve 5A. Carbon 38(9):1339–1350CrossRef
    Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36(1):23–40CrossRef
    Sehaqui H, Gálvez ME, Becatinni V, cheng Ng Y, Steinfeld A, Zimmermann T, Tingaut P (2015) Fast and reversible direct CO2 capture from air onto all-polymer nanofibrillated cellulose—polyethylenimine foams. Environ Sci Technol 49(5):3167–3174CrossRef
    Sevilla M, Fuertes AB (2011) Sustainable porous carbons with a superior performance for CO2 capture. Energ Environ Sci 4(5):1765–1771CrossRef
    Sevilla M, Fuertes AB (2012) CO2 adsorption by activated templated carbons. J Colloid Interface Sci 366(1):147–154CrossRef
    Shekhah O, Belmabkhout Y, Chen Z, Guillerm V, Cairns A, Adil K, Eddaoudi M (2014) Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture. Nat Commun 5:1–5CrossRef
    Takahashi T (2000) Adsorption of N-methylcarbamates on Membrane Filters. Report-Hokkaido Institute of Public Health 50:75–77
    Titirici MM, White RJ, Brun N, Budarin VL, Su DS, del Monte F, Clark JH, MacLachlan MJ (2015) Sustain Carbon Mater. Chem Soc Rev 44(1):250–290CrossRef
    Van Der Vaart R, Huiskes C, Bosch H, Reith T (2000) Single and mixed gas adsorption equilibria of carbon dioxide/methane on activated carbon. Adsorption 6(4):311–323CrossRef
    Wahby A, Ramos-Fernández JM, Martínez-Escandell M, Sepúlveda-Escribano A, Silvestre-Albero J, Rodríguez-Reinoso F (2010) High-surface-area carbon molecular sieves for selective CO2 adsorption. ChemSusChem 3(8):974–981CrossRef
    Wang J, Heerwig A, Lohe MR, Oschatz M, Borchardt L, Kaskel S (2012) Fungi-based porous carbons for CO2 adsorption and separation. J Mater Chem 22(28):13911–13913CrossRef
    Wickramaratne NP, Jaroniec M (2013) Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres. J Mater Chem A 1(1):112–116CrossRef
    Xing W, Liu C, Zhou Z, Zhang L, Zhou J, Zhuo S, Yan Z, Gao H, Wang G, Qiao SZ (2012) Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energ Environ Sci 5(6):7323–7327CrossRef
    Yang H, Yuan Y, Tsang SCE (2012) Nitrogen-enriched carbonaceous materials with hierarchical micro-mesopore structures for efficient CO2 capture. Chem Eng J 185–186:374–379CrossRef
    Yartseva NM (1998) Adsorption on porous polymer sorbents in ultrafiltration. Fibre Chem 30(4):260–262CrossRef
    Yazaydın AÖ, Snurr RQ, Park T-H, Koh K, Liu J, LeVan MD, Benin AI, Jakubczak P, Lanuza M, Galloway DB, Low JJ, Willis RR (2009) Screening of metal−organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J Am Chem Soc 131(51):18198–18199CrossRef
    Zhang Z, Zhou J, Xing W, Xue Q, Yan Z, Zhuo S, Qiao SZ (2013) Critical role of small micropores in high CO2 uptake. Phys Chem Chem Phys 15(7):2523–2529CrossRef
  • 作者单位:Rohan S. Dassanayake (1)
    Chamila Gunathilake (2)
    Tanya Jackson (1)
    Mietek Jaroniec (2)
    Noureddine Abidi (1)

    1. Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX, 79403, USA
    2. Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
Activated carbon was prepared from cellulose-based aerogel (aerocellulose) monoliths by carbonization and subsequent CO2 activation. The monolithic structure of the as-synthesized aerocellulose was retained during the carbonization and activation processes. The as-synthesized aerocellulose monolith was mainly mesoporous with well-developed surface area, large total pore volume, with only moderate CO2 uptake. In order to enhance CO2 adsorption, microporosity of carbonized aerocellulose was increased upon CO2 activation. The resulting activated carbon showed an enhanced specific surface area of ~750 m2 g−1, total pore volume of 0.43 cm3 g−1, and volume of micropores (pore widths <2 nm) of ~0.27 cm3 g−1. Activation of carbonized aerocellulose resulted in about five-fold increase in the specific surface area and over 27-fold increase in the volume of micropores as compared to the as-synthesized material. The resulting activated carbon showed excellent adsorption properties toward CO2 reaching 5.8 mmol g−1 of CO2 at 0 °C and 1 atm and 3.7 mmol g−1 of CO2 at 25 °C and 1.2 atm. High microporosity and surface area of the activated aerocellulose-derived carbon combined with its biocompatibility, biodegradability, non-toxicity, low cost, and good thermal stability makes this material beneficial for CO2 capture at ambient temperatures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700