Changes in Phenolics Distribution After Chemical Pretreatment and Enzymatic Conversion of Miscanthus 脳 giganteus Internode
详细信息    查看全文
  • 作者:N. Belmokhtar (1) (2) (3)
    A. Habrant (1) (2)
    N. Lopes Ferreira (3)
    B. Chabbert (1) (2)
  • 关键词:Lignin ; Hydroxycinnamic acids ; Saccharification ; UV microspectrophotometry
  • 刊名:Bioenergy Research
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:6
  • 期:2
  • 页码:506-518
  • 全文大小:810KB
  • 参考文献:1. Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804鈥?07. doi:10.1126/science.1137016 CrossRef
    2. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA et al (2006) The path forward for biofuels and biomaterials. Science 311(5760):484鈥?89. doi:10.1126/science.1114736 CrossRef
    3. Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454(7206):841鈥?45. doi:10.1038/nature07190 CrossRef
    4. S谩nchez 脫J, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99(13):5270鈥?295. doi:10.1016/j.biortech.2007.11.013 CrossRef
    5. Orts WJ, Holtman KM, Seiber JN (2008) Agricultural chemistry and bioenergy. J Agric Food Chem 56(11):3892鈥?899. doi:10.1021/jf8006695 CrossRef
    6. Schmer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci 105(2):464鈥?69. doi:10.1073/pnas.0704767105 CrossRef
    7. Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314(5805):1598鈥?600. doi:10.1126/science.1133306 CrossRef
    8. Heaton EA, Long SP, Voigt TB, Jones MB, Clifton-Brown J (2004) / Miscanthus for renewable energy generation: European Union experience and projections for Illinois. Mitig Adapt Strateg Glob Chang 9(4):433鈥?51. doi:10.1023/B:MITI.0000038848.94134.be CrossRef
    9. Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) / Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19(4):209鈥?27 CrossRef
    10. Anderson E, Arundale R, Maughan M, Oladeinde A, Wycislo A, Voigt T (2011) Growth and agronomy of / Miscanthus 脳 / giganteus for biomass production. Biofuels 2(2):167鈥?83. doi:doi:10.4155/bfs.10.80 CrossRef
    11. Hodgson EM, Lister SJ, Bridgwater AV, Clifton-Brown J, Donnison IS (2010) Genotypic and environmentally derived variation in the cell wall composition of / Miscanthus in relation to its use as a biomass feedstock. Biomass Bioenergy 34(5):652鈥?60. doi:10.1016/j.biombioe.2010.01.008 CrossRef
    12. Henrissat B, Teeri TT, Warren RAJ (1998) A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Lett 425(2):352鈥?54 CrossRef
    13. Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S et al (2006) Inhibition of cellulase, xylanase and 尾-glucosidase activities by softwood lignin preparations. J Biotechnol 125(2):198鈥?09. doi:10.1016/j.jbiotec.2006.02.021 CrossRef
    14. Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86(1):88鈥?8. doi:10.1002/bit.20043 CrossRef
    15. Iiyama K, Lam TBT, Stone BA (1990) Phenolic acid bridges between polysaccharides and lignin in wheat internodes. Phytochemistry 29(3):733鈥?37. doi:10.1016/0031-9422(90)80009-6 CrossRef
    16. Terashima N, Fukushima K, He L-F, Takabe K (1993) Comprehensive model of the lignified plant cell wall. ASA-CSSA-SSSA, Madison
    17. Ralph J (2010) Hydroxycinnamates in lignification. Phytochem Rev 9(1):65鈥?3. doi:10.1007/s11101-009-9141-9 CrossRef
    18. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10鈥?8. doi:10.1016/j.biortech.2008.05.027 CrossRef
    19. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioprod Biorefin 2(1):26鈥?0. doi:10.1002/bbb.49 CrossRef
    20. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713鈥?729. doi:10.1021/ie801542g CrossRef
    21. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673鈥?86. doi:10.1016/j.biortech.2004.06.025 CrossRef
    22. Grohman K, Torge R, Himmel ME (1985) Optimization of dilute acid pretreatmentof biomass. Biotechnology and Bioengineering Symposium 15:59鈥?0
    23. Grohman K, Bothast R (1997) Saccharification of corn fibre by combined treatment with dilute sulphuric acid and enzymes. Process Biochem 32(5):405鈥?15 CrossRef
    24. Brosse N, Sannigrahi P, Ragauskas A (2009) Pretreatment of / Miscanthus 脳 / giganteus using the ethanol organosolv process for ethanol production. Ind Eng Chem Res 48(18):8328鈥?334. doi:10.1021/ie9006672 CrossRef
    25. Kim TH, Lee YY (2005) Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresour Technol 96(18):2007鈥?013. doi:10.1016/j.biortech.2005.01.015 CrossRef
    26. Le Ngoc Huyen T, R茅mond C, Dheilly RM, Chabbert B (2010) Effect of harvesting date on the composition and saccharification of / Miscanthus 脳 / giganteus. Bioresour Technol 101(21):8224鈥?231. doi:10.1016/j.biortech.2010.05.087 CrossRef
    27. Murnen HK, Balan V, Chundawat SPS, Bals B, Sousa LDC, Dale BE (2007) Optimization of ammonia fiber expansion (AFEX) pretreatment and enzymatic hydrolysis of / Miscanthus 脳 / giganteus to fermentable sugars. Biotechnol Prog 23(4):846鈥?50. doi:10.1021/bp070098m
    28. Anderson W, Akin D (2008) Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. J Ind Microbiol Biotechnol 35(5):355鈥?66. doi:10.1007/s10295-007-0291-8 CrossRef
    29. Wilson JR, Hatfield RD (1997) Structural and chemical changes of cell wall types during stem development: consequences for fibre degradation by rumen microflora. Aust J Agric Res 48(2):165鈥?80, http://dx.doi.org/10.1071/A96051 CrossRef
    30. Akin DE (2008) Plant cell wall aromatics: influence on degradation of biomass. Biofuels, Bioprod Biorefin 2(4):288鈥?03. doi:10.1002/bbb.76 CrossRef
    31. Koch G, Kleist G (2001) Application of scanning UV microspectrophotometry to localise lignins and phenolic extractives in plant cell walls. Holzforschung 55(6):563鈥?67. doi:10.1515/hf.2001.091 CrossRef
    32. Goto M, Takabe K, Abe I (1998) Histochemistry and UV-microspectrometry of cell walls of untreated and ammonia-treated barley straw. Can J Plant Sc 78(3):437鈥?43. doi:doi:10.4141/P97-013 CrossRef
    33. Yoshinaga A, Wada A, Fujita M, Chabbert B, Pilate G (2007) Modified lignification in the cell walls of CAD depressed poplars. IAWA J 48(4):457鈥?71
    34. Siqueira G, Milagres A, Carvalho W, Koch G, Ferraz A (2011) Topochemical distribution of lignin and hydroxycinnamic acids in sugar-cane cell walls and its correlation with the enzymatic hydrolysis of polysaccharides. Biotechnol Biofuels 4(1):7. doi:10.1186/1754-6834-4-7 CrossRef
    35. Amougou N, Bertrand I, Machet J-M, Recous S (2011) Quality and decomposition in soil of rhizome, root and senescent leaf from / Miscanthus 脳 / giganteus, as affected by harvest date and N fertilization. Plant Soil 338(1):83鈥?7. doi:10.1007/s11104-010-0443-x CrossRef
    36. R茅mond C, Aubry N, Cr么nier D, No毛l S, Martel F, Roge B et al (2010) Combination of ammonia and xylanase pretreatments: Impact on enzymatic xylan and cellulose recovery from wheat straw. Bioresour Technol 101(17):6712鈥?717. doi:10.1016/j.biortech.2010.03.115 CrossRef
    37. Iiyama K, Wallis AFA (1988) An improved acetyl bromide procedure for determining lignin in woods and wood pulps. Wood Sci Technol 22(3):271鈥?80. doi:10.1007/bf00386022 CrossRef
    38. Lapierre C, Monties B, Rolando C (1986) Thioacidolysis of poplar lignins鈥攊dentification of monomeric syringyl products and characterization of guaicyl-syringyl lignin fractions. Holzforschung 40(2):113鈥?18. doi:10.1515/hfsg.1986.40.2.113 CrossRef
    39. Beaugrand J, Cr么nier D, Thiebeau P, Schreiber L, Debeire P, Chabbert B (2004) Structure, chemical composition, and xylanase degradation of external layers isolated from developing wheat grain. J Agric Food Chem 52(23):7108鈥?117. doi:10.1021/jf049529w CrossRef
    40. Durand H, Soucaille P, Tiraby G (1984) Comparative study of cellulases and hemicellulases from four fungi: mesophiles / Trichoderma reesi and / Penicillium sp. and thermophiles / Thievalia terrestris and / Sporotrichum cellulophilum. Enzym Microb Technol 6(4):175鈥?80. doi:10.1016/0141-0229(84)90027-9 CrossRef
    41. Herpoel-Gimbert I, Margeot A, Dolla A, Jan G, Molle D, Lignon S et al (2008) Comparative secretome analyses of two / Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol Biofuels 1. doi:1810.1186/1754-6834-1-18
    42. Goldschmid O (1971) Ultraviolet spectra. In: Sarkanen KV, Ludwig CH (eds) Lignins occurence, formation, structure and reactions. Whiley-Interscience, New York, pp 241鈥?66
    43. Vidal B, Dien B, Ting K, Singh V (2011) Influence of feedstock particle size on lignocellulose conversion鈥攁 review. Appl Biochem Biotechnol 164(8):1405鈥?421. doi:10.1007/s12010-011-9221-3 CrossRef
    44. Pingali SV, Urban VS, Heller WT, McGaughey J, O鈥橬eill H, Foston M et al (2010) Breakdown of cell wall nanostructure in dilute acid pretreated biomass. Biomacromolecules 11(9):2329鈥?335. doi:10.1021/bm100455h CrossRef
    45. Isci A, Himmelsbach J, Pometto A, Raman D, Anex R (2008) Aqueous ammonia soaking of switchgrass followed by simultaneous saccharification and fermentation. Appl Biochem Biotechnol 144(1):69鈥?7. doi:10.1007/s12010-007-8008-z CrossRef
    46. Kim TH, Nghiem NP, Hicks KB (2009) Pretreatment and fractionation of corn stover by soaking in ethanol and aqueous ammonia. Appl Biochem Biotechnol 153(1鈥?):171鈥?79. doi:10.1007/s12010-009-8524-0 CrossRef
    47. Zeng M, Ximenes E, Ladisch MR, Mosier NS, Vermerris W, Huang C-P et al (2012) Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: enzymatic hydrolysis (part 1). Biotechnol Bioeng 109(2):390鈥?97. doi:10.1002/bit.23337 CrossRef
    48. Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101(24):9624鈥?630. doi:10.1016/j.biortech.2010.06.137 CrossRef
    49. Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crop Prod 28(3):237鈥?59. doi:10.1016/j.indcrop. 2008.03.008 CrossRef
    50. Sannigrahi P, Pu Y, Ragauskas A (2010) Cellulosic biorefineries鈥攗nleashing lignin opportunities. Current Opinion in Environmental Sustainability 2(5鈥?):383鈥?93. doi:10.1016/j.carres.2010.02.010 CrossRef
    51. Hallac BB, Ray M, Murphy RJ, Ragauskas AJ (2010) Correlation between anatomical characteristics of ethanol organosolv pretreated / Buddleja davidii and its enzymatic conversion to glucose. Biotechnol Bioeng 107(5):795鈥?01. doi:10.1002/bit.22884 CrossRef
    52. Chundawat SPS, Donohoe BS, da Costa Sousa L, Elder T, Agarwal UP, Lu F et al (2011) Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ Sci 4(3):973鈥?84. doi:10.1039/c0ee00574f CrossRef
    53. Lopez S, Murison SD, Travis AJ, Chesson A (1993) Degradability of parenchyma and sclerenchyma cell walls isolated at different developmental stages from a newly extended maize internode. Acta Botanica Neerlandica 42(2):165鈥?74
    54. Dresb酶ll DB, Magid J (2006) Structural changes of plant residues during decomposition in a compost environment. Bioresour Technol 97(8):973鈥?81. doi:10.1016/j.biortech.2005.05.003 CrossRef
    55. Zeng M, Ximenes E, Ladisch MR, Mosier NS, Vermerris W, Huang C-P et al (2012) Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: SEM imaging (part 2). Biotechnol Bioeng 109(2):398鈥?04. doi:10.1002/bit.23335 CrossRef
    56. Chesson A, Provan GJ, Russell W, Scobbie L, Chabbert B, Monties B (1997) Characterisation of lignin from parenchyma and sclerenchyma cell walls of the maize internode. J Sci Food Agric 73(1):10鈥?6. doi:10.1002/(sici)1097-0010(199701)73:1<10::aid-jsfa697>3.0.co;2-e CrossRef
    57. Day A, Ruel K, Neutelings G, Cr么nier D, David H, Hawkins et al (2005) Lignification in the flax stem: evidence for an unusual lignin in bast fibers. Planta 222:234鈥?45. doi:10.1007/s00425-005-1537-1 CrossRef
  • 作者单位:N. Belmokhtar (1) (2) (3)
    A. Habrant (1) (2)
    N. Lopes Ferreira (3)
    B. Chabbert (1) (2)

    1. INRA, UMR614 Fractionnement des AgroRessources et Environnement, 51100, Reims Cedex, France
    2. Universit茅 de Reims Champagne-Ardenne, UMR614 Fractionnement des AgroRessources et Environnement, 51100, Reims, France
    3. IFP Energies nouvelles, 1&4 avenue du Bois Pr茅au, Rueil-Malmaison, 92500, France
  • ISSN:1939-1242
文摘
In addition to lignin, grass cell walls are characterized by the presence of hydroxycinnamic acids that play a significant role in cross-linking polymers into a cohesive network, and pretreatments are required to overcome the recalcitrance of lignocelluloses prior to enzymatic bioconversion of polysaccharides. The effects of dilute acid and ammonium hydroxide pretreatments were studied on the chemical composition and enzymatic saccharification of Miscanthus internodes fragments. The hydroxycinnamic acid content was reduced after both pretreatments, while lignin got enriched in condensed linked structures. In addition, dilute acid pretreatment was effective in decreasing xylan content of Miscanthus, while ammonia treatment induced a marked swelling effect on the cell walls of parenchyma, vascular sclerenchyma, and epidermal sclerenchyma. The phenol distribution at the cell level was estimated using UV transmission microspectrophotometry. Internode cell walls displayed different UV spectra according to the cell type. However, the secondary cell walls had similar UV spectra after pretreatment, whereas spectra recorded at the cell corner region displayed variations according to cell type and pretreatment. Acid pretreatment was more efficient than ammonia to improve the conversion of polysaccharides by a Trichoderma cellulolytic cocktail. Although pretreatments achieved moderate saccharification yields, the secondary cell walls were altered at some pit regions of the vascular sclerenchyma whereas parenchyma appeared recalcitrant. Variations in the UV spectra of enzyme-digested cell walls suggest pretreatment-dependent heterogeneity of the phenolic distribution in the more recalcitrant cell walls.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700