Influence of over-expression of the FLOWERING PROMOTING FACTOR 1 gene (FPF1) from Arabidopsis on wood formation in hybrid poplar (Populus tremula L. × 详细信息    查看全文
  • 作者:Hans Hoenicka (1)
    Silke Lautner (2)
    Andreas Klingberg (2)
    Gerald Koch (2)
    Fadia El-Sherif (3)
    Denise Lehnhardt (1)
    Bo Zhang (6)
    Ingo Burgert (6)
    Jürgen Odermatt (2)
    Siegbert Melzer (4) (5)
    J?rg Fromm (2)
    Matthias Fladung (1)
  • 关键词:Flowering time ; FPF1 ; Poplar ; Pyrolysis GC/MS ; Transgenic tree ; Wood chemistry ; Wood formation
  • 刊名:Planta
  • 出版年:2012
  • 出版时间:February 2012
  • 年:2012
  • 卷:235
  • 期:2
  • 页码:359-373
  • 全文大小:637KB
  • 参考文献:1. Albani MC, Coupland G (2010) Comparative analysis of flowering in annual and perennial plants. Curr Top Dev Biol 91:323-48
    2. Arend M, Fromm J (2007) Seasonal change in the drought response of wood cell development in poplar. Tree Physiol 27:985-92 CrossRef
    3. Battey NH, Tooke F (2002) Molecular control and variation in the floral transition. Curr Opin Plant Biol 5(1):62-8
    4. B?urle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655-64 CrossRef
    5. Bjurhager I, Olsson A-M, Zhang B, Gerber L, Kumar M, Berglund L, Burgert I, Sundberg B, Salmén L (2010) Ultra-structure and mechanical properties of / Populus wood with reduced lignin content caused by transgenic down-regulation of cinnamate 4-hydroxylase. Biomacromolecules 11:2359-365 CrossRef
    6. B?hlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) / CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040-043 CrossRef
    7. Bremer J (1991) Quantifizierung der Gerüstsubstanzen von Lignocellulosen durch analytische Pyrolyse–Gaschromatographie/Massenspektrometrie. Dissertation, University of Hamburg, Germany
    8. Cseke LJ, Zheng J, Podila GK (2003) Characterization of / PTM5 in aspen trees: a MADS-box gene expressed during woody vascular development. Gene 318:55-7 CrossRef
    9. Cseke LJ, Ravinder N, Pandey AK, Podila GK (2007) Identification of PTM5 protein interaction partners, a MADS-box gene involved in aspen tree vegetative development. Gene 391:209-22 CrossRef
    10. Demura T, Fukuda H (2006) Transcriptional regulation in wood formation. Trends Plant Sci 12:64-0 CrossRef
    11. Dünisch O, Funada R, Nakaba S, Fladung M (2006) Influence of overexpression of a gibberellin 20-oxidase gene on the kinetics of xylem cell development in hybrid poplar ( / Populus tremula L × / P tremuloides Michx). Holzforschung 60:608-17 CrossRef
    12. Elo A, Lemmetyinen J, Turunen ML, Tikka L, Sopanen T (2001) Three MADS-box genes similar to APETALA1 and FRUITFULL from silver birch ( / Betula pendula). Physiol Plant 112(1):95-03
    13. Elo A, Lemmetyinen J, Novak A, Keinonen K, Porali I, Hassinen M, Sopanen T (2007) / BpMADS4 has a central role in the inflorescence initiation in silver Birch ( / Betula pendula, Roth). Physiol Plant 131:149-58 CrossRef
    14. Escalante-Perez M, Lautner S, Nehls U, Selle A, Teuber M, Schnitzler JP, Teichmann T, Fayyaz P, Hartung W, Polle A, Fromm J, Hedrich R, Ache P (2009) Salt stress affects xylem differentiation of grey poplar ( / Populus × / canescens). Planta 229:299-09 CrossRef
    15. Fengel D, Wegener G (1989) Wood—chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin
    16. Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of / BpMADS4 from silver birch ( / Betula pendula Roth.) induces early flowering in apple ( / Malus × / domestica Borkh.). Plant Breed 126:37-45
    17. Flachowsky H, Hanke MV, Peil A, Strauss SH, Fladung M (2009) A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed 128:217-26 CrossRef
    18. Flachowsky H, H?ttasch C, H?fer M, Peil A, Hanke MV (2010) Overexpression of / LEAFY in apple leads to a columnar phenotype with shorter internodes. Planta 231:251-63 CrossRef
    19. Fladung M, Ahuja MR (1995) ‘Sandwich-method for non-radioactive hybridizations. Biotechniques 18:3-
    20. Fladung M, Muhs HJ, Ahuja MR (1996) Morphological changes observed in transgenic / Populus carrying the / rolC gene from / Agrobacterium rhizogenes. Silvae Genet 45:349-54
    21. Fladung M, Kumar S, Ahuja MR (1997) Genetic transformation of / Populus genotypes with different chimeric gene constructs: transformation efficiency and molecular analysis. Transgenic Res 6:111-21 CrossRef
    22. Greenup AG, Sasani S, Oliver SN, Talbot MJ, Dennis ES, Hemming MN, Trevaskis B (2010) / ODDSOC2 is a MADS box floral repressor that is down-regulated by vernalization in temperate cereals. Plant Physiol 153:1062-073 CrossRef
    23. Haimer E, Wendland M, Potthast A, Henniges U, Rosenau T, Liebner F (2010) Controlled precipitation and purification of hemicellulose from DMSO and DMSO/water mixtures by carbon dioxide as anti-solvent. J Supercrit Fluids 53:121-30 CrossRef
    24. Hoenicka H, Nowitzki O, Debener T, Fladung M (2006) Faster evaluation of induced floral sterility in transgenic early flowering poplar. Silvae Genetica 55:241-92
    25. Hoenicka H, Nowitzki O, Hanelt D, Fladung M (2008) Heterologous overexpression of the birch / FRUITFULL-like MADS-box gene / BpMADS4 prevents normal senescence and winter dormancy in / Populus tremula L. Planta 227:1001-011 CrossRef
    26. Holtorf S, Apel K, Bohlmann H (1995) Comparison of different constitutive and inducible promoters for the overexpression of transgenes in / Arabidopsis thaliana. Plant Mol Biol 29:637-46 CrossRef
    27. Hosoya T, Kawamoto H, Saka S (2007) Pyrolysis behaviors of wood and its constituent polymers at gasification temperature. J Anal Appl Pyrolysis 78:328-36 CrossRef
    28. Jeong JH, Song HR, Ko JH, Jeong YM, Kwon YE, Seol JH, Amasino RM, Noh B, Noh YS (2009) Repression of / FLOWERING LOCUS T chromatin by functionally redundant histone H3 lysine 4 demethylases in Arabidopsis. PLoS One 25:e8033 CrossRef
    29. Joshi CP, Thammannagowda S, Fujino T, Gou JQ, Avci U, Haigler CH, McDonnell LM, Mansfield SD, Mengesha B, Carpita NC, Harris D, Debolt S, Peter GF (2011) Perturbation of wood cellulose synthesis causes pleiotropic effects in transgenic aspen. Mol Plant 4:331-45 CrossRef
    30. Kania T, Russenberger D, Peng S, Apel K, Melzer S (1997) / FPF1 promotes flowering in / Arabidopsis. Plant Cell 9:1327-338 CrossRef
    31. Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer / FT. Science 286:1962-965 CrossRef
    32. Kleen M, Gellerstedt G (1995) Influence of inorganic species on the formation of polysaccharide and lignin degradation products in the analytical pyrolysis of pulps. J Anal Appl Pyrolysis 35:15-1 CrossRef
    33. Koch G, Grünwald C (2004) Application of UV microspectrophotometry for the topochemical detection of lignin and phenolic extractives in wood fibre cell walls. In: Schmitt U et al (eds) Wood fibre cell walls: methods to study their formation, structure and properties. Swedish University of Agricultural Sciences, Sweden, pp 119-30
    34. Koch G, Kleist G (2001) Application of scanning UV microspectrophotometry to localise lignins and phenolic extractives in plant cell walls. Holzforschung 55:563-67 CrossRef
    35. Langer K, Ache P, Geiger D, Stinzing A, Arend M, Wind C, Regan S, Fromm J, Hedrich R (2002) Poplar potassium transporters capable of controlling K+ homeostasis and K+-dependent xylogenesis. Plant J 32:997-009 CrossRef
    36. Lautner S, Ehlting B, Windeisen E, Rennenberg H, Matyssek R, Fromm J (2007) Calcium nutrition has a significant influence on wood formation in poplar. New Phytol 173:743-52 CrossRef
    37. Martín-Trillo M, Martínez-Zapater JM (2002) Growing up fast: manipulating the generation time of trees. Curr Opin Biotechnol. 13(2):151-55
    38. Meilan R (2007) Floral induction in woody angiosperms. New Forest 14:179-02 CrossRef
    39. Melzer S, Kampmann G, Chandler J, Apel K (1999) / FPF1 modulates the competence to flowering in Arabidopsis. Plant J 18:395-05 CrossRef
    40. Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T (2008) Flowering-time genes modulate meristem determinacy and growth form in / Arabidopsis thaliana. Nat Genet 40:1489-492 CrossRef
    41. Merchan F, de Lorenzo L, Rizzo SG, Niebel A, Manyani H, Frugier F, Sousa C, Crespi M (2007) Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in / Medicago truncatula. Plant J 51:1-7 CrossRef
    42. Nilsson O, Weigel D (1997) Modulating the timing of flowering. Curr Opin Biotechnol 8:195-99 CrossRef
    43. Nishikawa F, Endo T, Shimada T, Fujii H, Shimizu T, Kobayashi Y, Araki T, Omura M (2010) Transcriptional changes in CiFT-introduced transgenic trifoliate orange ( / Poncirus trifoliata L. Raf). Tree Physiol 30:431-39 CrossRef
    44. Nunes CA, Lima CF, Barbosa LCA, Colodette JL, Gouveia AFG, Silverio FO (2010) Determination of / Eucalyptus spp lignin S/G ratio: a comparison between methods. Bioresour Technol 101:4056-061 CrossRef
    45. Pe?a L, Martín-Trillo M, Juárez J, Pina JA, Navarro L, Martínez-Zapater JM (2001) Constitutive expression of / Arabidopsis LEAFY or / APETALA1 genes in citrus reduces their generation time. Nat Biotechnol 19(3):263-67
    46. Rodrigues J, Meier D, Faix O, Pereira H (1999) Determination of tree to tree variation in syringyl/guaiacyl ratio of / Eucalyptus globulus wood lignin by analytical pyrolysis. J Anal Appl Pyrolysis 48:121-28 CrossRef
    47. Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12(5):217-23
    48. Rottmann WH, Meilan R, Sheppard LA, Brunner AM, Skinner JS, Ma C, Cheng S, Jouanin L, Pilate G, Strauss SH (2000) Diverse effects of overexpression of / LEAFY and / PTLF, a poplar (Populus) homolog of / LEAFY/FLORICAULA, in transgenic poplar and / Arabidopsis. Plant J 22:24-35 CrossRef
    49. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: Methods in molecular biology. Humana Press, Totowa, pp 365-86
    50. Salehi H, Ransom CB, Oraby HF, Seddighi Z, Sticklen MB (2005) Delay in flowering and increase in biomass of transgenic tobacco expressing the Arabidopsis floral repressor gene FLOWERING LOCUS C. J Plant Physiol 162(6):717-17
    51. Savidge RA (1996) Xylogenesis, genetic and environmental regulation. IAWA J 17:269-10
    52. Shen DK, Gu S, Bridgwater AV (2010) The thermal performance of the polysaccharides extracted from hardwood: Cellulose and hemicellulose. Carbohydr Polym 82:39-5 CrossRef
    53. Sibout R, Plantegenet S, Hardtke CS (2008) Flowering as a condition for xylem expansion in Arabidopsis hypocotyl and root. Curr Biol 18:458-63 CrossRef
    54. Smykal P, Gleissner R, Corbesier L, Apel K, Melzer S (2004) Modulation of flowering responses in different / Nicotiana varieties. Plant Mol Biol 55:253-62 CrossRef
    55. Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31-3 CrossRef
    56. Sundberg B, Uggla C, Tuominen H (2000) Cambial growth and auxin gradients. In: Savidge RA, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scient Publ, Oxford, pp 169-88
    57. Suzuki S, Li L, Sun YH, Chiang VL (2006) The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in / Populus trichocarpa. Plant Physiol 142:1233-245 CrossRef
    58. T?pfer R, Matzeit V, Gronenborn B, Schell J, Steinbiss HH (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucl Acids Res 15:5890 CrossRef
    59. Tr?nkner C, Lehmann S, Hoenicka H, Hanke MV, Fladung M, Lenhardt D, Dunemann F, Gau A, Schlangen K, Malnoy M, Flachowsky H (2010) Over-expression of an / FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 232:1309-324 CrossRef
    60. Wang H, Ge L, Ye HC, Chong K, Liu BY, Li GF (2004) Studies on the effects of / fpf1 gene on / Artemisia annua flowering time and on the linkage between flowering and artemisinin biosynthesis. Planta Med 70:347-52 CrossRef
    61. Weigel D, Nilsson (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495-00
    62. Weiss SM, Indurkhya N (1998) Predictive data mining: a practical guide. Morgan Kaufmann Publishers Inc, San Francisco
    63. Wind C, Arend M, Fromm J (2004) Potassium-dependent cambial growth in poplar. Plant Biol 6:30-7 CrossRef
    64. Xu ML, Jiang JF, Ge L, Xu YY, Chen H, Zhao Y, Bi YR, Wen JQ, Chong K (2005) / FPF1 transgene leads to altered flowering time and root development in rice. Plant Cell Rep 24:79-5 CrossRef
    65. Xu M, Zhang B, Su X, Zhang S, Huang M (2011) Reference gene selection for quantitative real-time polymerase chain reaction in / Populus. Anal Biochem 408:337-39 CrossRef
    66. Zhang J, Elo A, Helariutta Y (2010) Arabidopsis as a model for wood formation. Curr Opin Biotechnol 22:1-
  • 作者单位:Hans Hoenicka (1)
    Silke Lautner (2)
    Andreas Klingberg (2)
    Gerald Koch (2)
    Fadia El-Sherif (3)
    Denise Lehnhardt (1)
    Bo Zhang (6)
    Ingo Burgert (6)
    Jürgen Odermatt (2)
    Siegbert Melzer (4) (5)
    J?rg Fromm (2)
    Matthias Fladung (1)

    1. Johann Heinrich von Thünen Institute (vTI), Institute of Forest Genetics, Sieker Landstr. 2, 22927, Grosshansdorf, Germany
    2. Zentrum Holzwirtschaft der Universit?t Hamburg, Johann Heinrich von Thünen Institute (vTI), Leuschnerstr. 91, 21031, Hamburg, Germany
    3. Department of Horticulture, Faculty of Agriculture, Suez-Canal University, Ismailia, Egypt
    6. Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany
    4. Laboratory of Plant Systematics, Institute of Botany and Microbiology, Leuven, Belgium
    5. Plant Breeding Institute, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
文摘
Constitutive expression of the FPF1 gene in hybrid aspen (Populus tremula L. × P. tremuloides Michx.) showed a strong effect on wood formation but no effect on flowering time. Gene expression studies showed that activity of flowering time genes PtFT1, PtCO2, and PtFUL was not increased in FPF1 transgenic plants. However, the SOC1/TM3 class gene PTM5, which has been related to wood formation and flowering time, showed a strong activity in stems of all transgenic lines studied. Wood density was lower in transgenic plants, despite significantly reduced vessel frequency which was overcompensated by thinner fibre cell walls. Chemical screening of the wood by pyrolysis GC/MS showed that FPF1 transgenics have higher fractions of cellulose and glucomannan products as well as lower lignin content. The latter observation was confirmed by UV microspectrophotometry on a cellular level. Topochemical lignin distribution revealed a slower increase of lignin incorporation in the developing xylem of the transgenics when compared with the wild-type plants. In line with the reduced wood density, micromechanical wood properties such as stiffness and ultimate stress were also significantly reduced in all transgenic lines. Thus, we provide evidence that FPF1 class genes may play a regulatory role in both wood formation and flowering in poplar.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700