Carbon-supported and nanosheet-assembled vanadium oxide microspheres for stable lithium-ion battery anodes
详细信息    查看全文
  • 作者:Chaojiang Niu ; Meng Huang ; Peiyao Wang ; Jiashen Meng ; Xiong Liu…
  • 关键词:vanadium oxide ; microspheres ; amorphous ; lithium ; ion battery ; anodes
  • 刊名:Nano Research
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:9
  • 期:1
  • 页码:128-138
  • 全文大小:2,097 KB
  • 参考文献:[1]Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.CrossRef
    [2]Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.CrossRef
    [3]Liu, Y. X.; Wang, D. S.; Peng, Q.; Chu, D. R.; Liu, X. W.; Li, Y. D. Directly assembling ligand-free ZnO nanocrystals into three-dimensional mesoporous structures by oriented attachment. Inorg. Chem. 2011, 50, 5841–5847.CrossRef
    [4]Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.CrossRef
    [5]Armstrong, M. J.; O’ Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res. 2014, 7, 1–62.CrossRef
    [6]Liu, B.; Zhang, J.; Wang, X. F.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. Hierarchical three-dimensional ZnCO2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005–3011.CrossRef
    [7]Zhou, L.; Zhao, D. Y.; Lou, X. W. LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew. Chem., Int. Ed. 2012, 51, 239–241.CrossRef
    [8]Wu, H. B.; Chen, J. S.; Hng, H. H.; Lou, X. W. Nanostructured metal oxide-based materials as advanced anodes for lithiumion batteries. Nanoscale 2012, 4, 2526–2542.CrossRef
    [9]Wei, Q. L.; Tan, S. S.; Liu, X. Y.; Yan, M. Y.; Wang, F. C.; Li, Q. D.; An, Q. Y.; Sun, R. M.; Zhao, K. N.; Wu, H. A. et al. Novel polygonal vanadium oxide nanoscrolls as stable cathode for lithium storage. Adv. Funct. Mater. 2015, 25, 1773–1779.CrossRef
    [10]He, C. N.; Wu, S.; Zhao, N. Q.; Shi, C. S.; Liu, E. Z.; Li, J. J. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 2013, 7, 4459–4469.CrossRef
    [11]Jeong, J. M.; Choi, B. G.; Lee, S. C.; Lee, K. G.; Chang, S. J.; Han, Y. K.; Lee, Y. B.; Lee, H. U.; Kwon, S.; Lee, G. et al. Hierarchical hollow spheres of Fe2O3@polyaniline for lithium ion battery anodes. Adv. Mater. 2013, 25, 6250–6255.CrossRef
    [12]Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W. C.; Cheng, F. Y.; Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2014, 7, 199–208.CrossRef
    [13]Lee, C. W.; Seo, S. D.; Kim, D. W.; Park, S.; Jin, K.; Kim, D. W.; Hong, K. S. Heteroepitaxial growth of ZnO nanosheet bands on ZnCO2O4 submicron rods toward high-performance Li ion battery electrodes. Nano Res. 2013, 6, 348–355.CrossRef
    [14]Jian, Z. L.; Zheng, M. B.; Liang, Y. L.; Zhang, X. X.; Gheytani, S.; Lan, Y. C.; Shi, Y.; Yao, Y. Li3VO4 anchored graphene nanosheets for long-life and high-rate lithium-ion batteries. Chem. Commun. 2015, 51, 229–231.CrossRef
    [15]Su, D. W.; Dou, S. X.; Wang, G. X. Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries. Nano Res. 2014, 7, 794–803.CrossRef
    [16]Xie, R. G.; Li, Z.; Peng, X. G. Nucleation kinetics vs. chemical kinetics in the initial formation of semiconductor nanocrystals. J. Am. Chem. Soc. 2009, 131, 15457–15466.CrossRef
    [17]Chen, Y.; Song, B. H.; Li, M.; Lu, L.; Xue, J. M. Fe3O4 nanoparticles embedded in uniform mesoporous carbon spheres for superior high-rate battery applications. Adv. Funct. Mater. 2014, 24, 319–326.CrossRef
    [18]Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.CrossRef
    [19]Chen, P. C.; Xu, J.; Chen, H. T.; Zhou, C. W. Hybrid silicon-carbon nanostructured composites as superior anodes for lithium ion batteries. Nano Res. 2011, 4, 290–296.CrossRef
    [20]Palacin, M. R. Recent advances in rechargeable battery materials: A chemist’s perspective. Chem. Soc. Rev. 2009, 38, 2565–2575.CrossRef
    [21]Niu, C. J.; Meng, J. S.; Wang, X. P.; Han, C. H.; Yan, M. Y.; Zhao, K. N.; Xu, X. M.; Ren, W. H.; Zhao, Y. L.; Xu, L. et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat. Commun. 2015, 6, 7402.CrossRef
    [22]Yao, J.; Yan, H.; Lieber, C. M. A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 2013, 8, 329–335.CrossRef
    [23]Wu, H.; Zheng, G. Y.; Liu, N.; Carney, T. J.; Yang, Y.; Cui, Y. Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett. 2012, 12, 904–909.CrossRef
    [24]Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353–358.CrossRef
    [25]Yan, X. Q.; Wang, X. J.; Tang, Y.; Ma, G. C.; Zou, S. H.; Li, R. H.; Peng, X. G.; Dai, S.; Fan, J. Unusual loadingdependent sintering-resistant properties of gold nanoparticles supported within extra-large mesopores. Chem. Mater. 2013, 25, 1556–1563.CrossRef
    [26]Zhou, W. J.; Cao, X. H.; Zeng, Z. Y.; Shi, W. H.; Zhu, Y. Y.; Yan, Q. Y.; Liu, H.; Wang, J. Y.; Zhang, H. One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ. Sci. 2013, 6, 2216–2221.CrossRef
    [27]Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828–11862.CrossRef
    [28]Zhang, H. G.; Yu, X. D.; Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 2011, 6, 277–281.CrossRef
    [29]Qiu, Y. C.; Xu, G. L.; Kuang, Q.; Sun, S. G.; Yang, S. H. Hierarchical WO3 flowers comprising porous single-crystalline nanoplates show enhanced lithium storage and photocatalysis. Nano Res. 2012, 5, 826–832.CrossRef
    [30]Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192.CrossRef
    [31]Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Dai, H. J. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 2013, 135, 2013–2036.CrossRef
    [32]Xu, Y. X.; Huang, X. Q.; Lin, Z. Y.; Zhong, X.; Huang, Y.; Duan, X. F. One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res. 2013, 6, 65–76.CrossRef
    [33]Li, L.; Lu, H.; Yang, Z. Y.; Tong, L. M.; Bando, Y.; Golberg, D. Bandgap-graded CdSxSe1-x nanowires for highperformance field-effect transistors and solar cells. Adv. Mater. 2013, 25, 1109–1113.CrossRef
    [34]Chen, S. Q.; Bao, P. T.; Huang, X. D.; Sun, B.; Wang, G. X. Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance. Nano Res. 2014, 7, 85–94.CrossRef
    [35]Liu, X. Q.; Wang, C. L.; Cai, B.; Xiao, X. H.; Guo, S. S.; Fan, Z. Y.; Li, J. C.; Duan, X. F.; Liao, L. Rational design of amorphous indium zinc oxide/carbon nanotube hybrid film for unique performance transistors. Nano Lett. 2012, 12, 3596–3601.CrossRef
    [36]Luo, J. S.; Liu, J. L.; Zeng, Z. Y.; Ng, C. F.; Ma, L. J.; Zhang, H.; Lin, J. Y.; Shen, Z. X.; Fan, H. J. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 2013, 13, 6136–6143.CrossRef
    [37]Niu, C. J.; Meng, J. S.; Han, C. H.; Zhao, K. N.; Yan, M. Y.; Mai, L. Q. VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett. 2014, 14, 2873–2878.CrossRef
    [38]Sheng, J. Z.; Li, Q. D.; Wei, Q. L.; Zhang, P. F.; Wang, Q. Q.; Lv, F.; An, Q. Y.; Chen, W.; Mai, L. Q. Metastable amorphous chromium-vanadium oxide nanoparticles with superior performance as a new lithium battery cathode. Nano Res. 2014, 7, 1604–1612.CrossRef
    [39]An, Q. Y.; Zhang, P. F.; Xiong, F. Y.; Wei, Q. L.; Sheng, J. Z.; Wang, Q. Q.; Mai, L. Q. Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries. Nano Res. 2015, 8, 481–490.CrossRef
    [40]Pan, A. Q.; Wu, H. B.; Yu, L.; Lou, X. W. Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. Angew. Chem. 2013, 125, 2282–2286.CrossRef
    [41]Li, H. Q.; He, P.; Wang, Y. G.; Hosono, E.; Zhou, H. S. High-surface vanadium oxides with large capacities for lithium-ion batteries: From hydrated aerogel to nanocrystalline VO2(B), V6O13 and V2O5. J. Mater. Chem. 2011, 21, 10999–11009.CrossRef
    [42]Sun, X.; Zhou, C. G.; Xie, M.; Hu, T.; Sun, H. T.; Xin, G. Q.; Wang, G. K.; George, S. M.; Lian, J. Amorphous vanadium oxide coating on graphene by atomic layer deposition for stable high energy lithium ion anodes. Chem. Commun. 2014, 50, 10703–10706.CrossRef
    [43]Augustyn, V.; Dunn, B. Low-potential lithium-ion reactivity of vanadium oxide aerogels. Electrochim. Acta 2013, 88, 530–535.CrossRef
    [44]An, Q. Y.; Wei, Q. L.; Mai, L. Q.; Fei, J. Y.; Xu, X.; Zhao, Y. L.; Yan, M. Y.; Zhang, P. F.; Huang, S. Z. Supercritically exfoliated ultrathin vanadium pentoxide nanosheets with high rate capability for lithium batteries. Phys. Chem. Chem. Phys. 2013, 15, 16828–16833.CrossRef
    [45]Zhao, D.; Zheng, L. R.; Xiao, Y.; Wang, X.; Cao M. H. Lithium storage in microstructures of amorphous mixedvalence vanadium oxide as anode materials. ChemSusChem 2015, 8, 2212–2222.CrossRef
    [46]Xu, Y.; Zheng, L.; Wu, C. Z.; Qi, F.; Xie, Y. New-phased metastable V2O3 porous urchinlike micronanostructures: Facile synthesis and application in aqueous lithium ion batteries. Chem.—Eur. J. 2011, 17, 384–391.CrossRef
    [47]Chae, O. B.; Kim, J.; Park, I.; Jeong, H.; Ku, J. H.; Ryu, J. H.; Kang, K.; Oh, S. M. Reversible lithium storage at highly populated vacant sites in an amorphous vanadium pentoxide electrode. Chem. Mater. 2014, 26, 5874–5881.CrossRef
    [48]Zhang, K.; Kim, H. J.; Shi, X. J.; Lee, J. T.; Choi, J. M.; Song, M. S.; Park, J. H. Graphene/acid coassisted synthesis of ultrathin MoS2 nanosheets with outstanding rate capability for a lithium battery anode. Inorg. Chem. 2013, 52, 9807–9812.CrossRef
    [49]Nan, C. Y.; Lin, Z.; Liao, H. G.; Song, M. K.; Li, Y. D.; Cairns, E. J. Durable carbon-coated Li2S core-shell spheres for high performance lithium/sulfur cells. J. Am. Chem. Soc. 2014, 136, 4659–4663.CrossRef
    [50]Zhao, Y.; Gao, D. L.; Ni, J. F.; Gao, L. J.; Yang, J.; Li, Y. Onepot facile fabrication of carbon-coated Bi2S3 nanomeshes with efficient Li-storage capability. Nano Res. 2014, 7, 765–773.CrossRef
    [51]Han, F.; Ma, L. J.; Sun, Q.; Lei, C.; Lu, A. H. Rationally designed carbon-coated Fe3O4 coaxial nanotubes with hierarchical porosity as high-rate anodes for lithium ion batteries. Nano Res. 2014, 7, 1706–1717.CrossRef
    [52]Dimesso, L.; Förster, C.; Jaegermann, W.; Khanderi, J. P.; Tempel, H.; Popp, A.; Engstler, J.; Schneider, J. J.; Sarapulova, A.; Mikhailova, D. et al. Developments in nanostructured LiMPO4 (M = Fe, Co, Ni, Mn) composites based on three dimensional carbon architecture. Chem. Soc. Rev. 2012, 41, 5068–5080.CrossRef
    [53]Jang, B.; Park, M.; Chae, O. B.; Park, S.; Kim, Y.; Oh, S. M.; Piao, Y. Z.; Hyeon, T. Direct synthesis of self-assembled ferrite/carbon hybrid nanosheets for high performance lithium-ion battery anodes. J. Am. Chem. Soc. 2012, 134, 15010–15015.CrossRef
    [54]Zhou, L.; Zhao, D. Y.; Lou, X. W. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater. 2012, 24, 745–748.CrossRef
    [55]Grugeon, S.; Laruelle, S.; Dupont, L.; Tarascon, J. M. An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci. 2003, 5, 895–904.CrossRef
    [56]Jiang, L.; Qu, Y.; Ren, Z. Y.; Yu, P.; Zhao, D. D.; Zhou, W.; Wang, L.; Fu, H. G. In situ carbon-coated yolk-shell V2O3 microspheres for lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 1595–1601.CrossRef
    [57]Lee, J. E.; Yu, S. H.; Lee, D. J.; Lee, D. C.; Han, S. I.; Sung, Y. E.; Hyeon, T. Facile and economical synthesis of hierarchical carbon-coated magnetite nanocomposite particles and their applications in lithium ion battery anodes. Energy Environ. Sci. 2012, 5, 9528–9533.CrossRef
    [58]Zheng, C.; Zhou, X. F.; Cao, H. L.; Wang, G. H.; Liu, Z. P. Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. J. Power Sources 2014, 258, 290–296.CrossRef
    [59]Choi, S. H.; Kang, Y. C. Aerosol-assisted rapid synthesis of SnS-C composite microspheres as anode material for Na-ion batteries. Nano Res. 2015, 8, 1595–1603.CrossRef
    [60]Choi, S. H.; Lee, J. K.; Kang, Y. C. Three-dimensional porous graphene-metal oxide composite microspheres: Preparation and application in Li-ion batteries. Nano Res. 2015, 8, 1584–1594.CrossRef
    [61]Fei, H. L.; Peng, Z. W.; Li, L.; Yang, Y.; Lu, W.; Samuel, E. L. G.; Fan, X. J.; Tour, J. M. Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries. Nano Res. 2014, 7, 502–510.CrossRef
    [62]Pan, A. Q.; Wu, H. B.; Zhang, L.; Lou, X. W. Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties. Energy Environ. Sci. 2013, 6, 1476–1479.CrossRef
  • 作者单位:Chaojiang Niu (1)
    Meng Huang (1)
    Peiyao Wang (1)
    Jiashen Meng (1)
    Xiong Liu (1)
    Xuanpeng Wang (1)
    Kangning Zhao (1)
    Yang Yu (1)
    Yuzhu Wu (1)
    Chao Lin (1)
    Liqiang Mai (1)

    1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Naturally abundant transition metal oxides with high theoretical capacity have attracted more attention than commercial graphite for use as anodes in lithium-ion batteries. Lithium-ion battery electrodes that exhibit excellent electrochemical performance can be efficiently achieved via three-dimensional (3D) architectures decorated with conductive polymers and carbon. As such, we developed 3D carbon-supported amorphous vanadium oxide microspheres and crystalline V2O3 microspheres via a facile solvothermal method. Both samples were assembled with ultrathin nanosheets, which consisted of uniformly distributed vanadium oxides and carbon. The formation processes were clearly revealed through a series of time-dependent experiments. These microspheres have numerous active reaction sites, high electronic conductivity, and excellent structural stability, which are all far superior to those of other lithium-ion battery anodes. More importantly, 95% of the second-cycle discharge capacity was retained after the amorphous microspheres were subjected to 7,000 cycles at a high rate of 2,000 mA/g. The crystalline microspheres also exhibited a high-rate and long-life performance, as evidenced by a 98% retention of the second-cycle discharge capacity after 9,000 cycles at a rate of 2,000 mA/g. Therefore, this facile solvothermal method as well as unique carbon-supported and nanosheet-assembled microspheres have significant potential for the synthesis of and use in, respectively, lithium-ion batteries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700