Optimization of Gas Metal Arc Welding (GMAW) Process for Maximum Ballistic Limit in MIL A46100 Steel Welded All-Metal Armor
详细信息    查看全文
  • 作者:M. Grujicic (1)
    S. Ramaswami (1)
    J. S. Snipes (1)
    R. Yavari (1)
    C.-F. Yen (2)
    B. A. Cheeseman (2)

    1. Department of Mechanical Engineering
    ; Clemson University ; 241 Engineering Innovation Building ; Clemson ; SC ; 29634-0921 ; USA
    2. Army Research Laboratory 鈥?Survivability Materials Branch
    ; Aberdeen ; Proving Ground ; MD ; 21005-5069 ; USA
  • 关键词:ballistic limit ; gas metal arc welding (GMAW) process optimization ; MIL A46100 armor ; grade steel
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:24
  • 期:1
  • 页码:229-244
  • 全文大小:2,784 KB
  • 参考文献:1. M. Grujicic, S. Ramaswami, J.S. Snipes, R. Yavari, A. Arakere, C.-F. Yen, and B.A. Cheeseman, Computational Modeling of Microstructure Evolution in AISI, Steel During Gas Metal Arc Butt Welding, / J. Mater. Eng. Perform., 1005, 22(1209鈥?222), p 2013
    2. M. Grujicic, A. Arakere, S. Ramaswami, J.S. Snipes, R. Yavari, C.-F. Yen, B.A. Cheeseman, and J.S. Montgomery, Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel, / J. Mater. Eng. Perform., 2013, 22, p 1541鈥?557 CrossRef
    3. M. Grujicic, S. Ramaswami, J.S. Snipes, C.-F. Yen, B.A. Cheeseman, and J.S. Montgomery, Multi-Physics Modeling and Simulations of MIL A46100 Armor-Grade Martensitic Steel Gas Metal Arc Welding Process, / J. Mater. Eng. Perform., 2013, 22, p 2950鈥?969 CrossRef
    4. M. Grujicic, J.S. Snipes, R. Galgalikar, S. Ramaswami, R. Yavari, C.-F. Yen, B.A. Cheeseman, and J.S. Montgomery, Improved Gas Metal Arc Welding Multi-Physics Process Model and Its Application to MIL A46100 Armor-Grade Steel Butt-Welds, / Multidiscip. Model. Mater. Str., 2014, 10, p 176鈥?10
    5. M. Grujicic, J.S. Snipes, R. Galgalikar, S. Ramaswami, R. Yavari, C.-F.Yen, and B.A. Cheeseman, Ballistic-Failure Mechanisms in Gas Metal Arc Welds of MIL A46100 Armor-Grade Steel: A Computational Investigation, / J. Mater. Eng. Perform., 2014, 23, p 3108鈥?125
    6. U.S. Environmental Protection Agency, 鈥?em class="a-plus-plus">AP 42, Fifth Edition: Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources,鈥?p 12.19-1鈥?2.19-3
    7. M.G.H. Wells, R.K. Weiss, and J.S. Montgomery, / 鈥淟AV Armor Plate Study鈥? MTL TR 92鈥?6, U.S. Army Materials Technology Laboratory, Watertown, 1992
    8. M. Grujicic, S. Tangrila, B.O. Cavin, W.D. Porter, and C.R. Hubbard, Effect of Iron Additions on Structure of Laves Phases in Nb-Cr-Fe Alloys, / Mater. Sci. Eng., 1993, A160, p 37鈥?8
    9. R.C. Reed, T. Akbay, Z. Shen, J.M. Robinson, and J.H. Root, Determination of Reaustenitisation Kinetics in a Fe-0.4C Steel Using Dilatometry and Neutron Diffraction, / Mater. Sci. Eng. A, 1998, 256, p 152鈥?65 CrossRef
    10. K.L. Moore, D.S. Naidu, R. Yender, and J. Tyler, Gas Metal Arc Welding Control: Part I-Modeling and Analysis, / Nonlinear Anal. Theory Methods Appl, 1997, 30, p 3101鈥?111 CrossRef
    11. J. Haidar, A Theoretical Model for Gas Metal Arc Welding and Gas Tungsten Arc Welding. I, / J. Appl. Phys., 1998, 84, p 3518鈥?529 CrossRef
    12. J. Haidar, Prediction of Metal Droplet Formation in Gas Metal Arc Welding. II, / J. Appl. Phys., 1998, 84, p 3530鈥?540 CrossRef
    13. J. Haidar, An Analysis of Heat Transfer and Fume Production in Gas Metal Arc Welding. III, / J. Appl. Phys., 1998, 85, p 3448鈥?459 CrossRef
    14. Z. Bingul and G.E. Cook, Dynamic Modeling of GMAW Process, / Proc. IEEE Int. Conf. Robot. Autom., 1999, 4, p 3059鈥?064
    15. Z. Bingul and G.E. Cook, A Real-Time Prediction Model of Electrode Extension for GMAW, / IEEE/ASME Trans. Mechatron., 2006, 11, p 47鈥?4 CrossRef
    16. T.P. Quinn, R.B. Madigan, and T.A. Siewert, An Electrode Extension Model for Gas Metal Arc Welding, / Weld. J., 1994, 73, p 241鈥?48
    17. J. Goldak, A. Chakravarti, and M. Bibby, A New Finite Element Model for Welding Heat Sources, / Metall. Mater. Trans. B, 1984, 15, p 299鈥?05 CrossRef
    18. N.T. Nguyen, A. Ohta, K. Matsuoka, N. Suzuki, and Y. Maeda, Analytical Solutions for Transient Temperature of Semi-infinite Body Subjected to 3-D Moving Heat Sources, / Weld. J., 1999, 78, p 265鈥?74
    19. V.D. Fachinotti, A.A. Anca, and A. Cardona, Analytical Solutions of the Thermal Field Induced by Moving Double-Ellipsoidal and Double-Elliptical Heat Sources in a Semi-infinite Body, / Commun. Numer. Methods Eng., 2011, 27, p 595鈥?07
    20. S. Ohring and H.J. Lugt, Numerical Simulation of a Time-Dependent 3-D GMA Weld Pool Due to a Moving Arc, / Weld. J., 1999, 78, p 416鈥?24
    21. G.M. Oreper, T.W. Eagar, and J. Szekely, Convection in Arc Weld Pools, / Weld. J. Res. Suppl., 1983, 62, p 307鈥?12
    22. S.Y. Lee and S.J. Na, Numerical Analysis of Molten Pool Convection Considering Geometric Parameters of Cathode and Anode, / Weld. J., 1997, 76, p 484鈥?97
    23. Z. Cao, Z. Yang, and X.L. Chen, Three-Dimensional Simulation of Transient GMA Weld Pool with Free Surface, / Weld. J., 2004, 83, p 169鈥?76
    24. J. Hu and H.L. Tsai, Heat and Mass Transfer in Gas Metal Arc Welding. Part I: The Arc, / Int. J. Heat Mass Transf., 2007, 50, p 833鈥?46 CrossRef
    25. J. Hu and H.L. Tsai, Heat and Mass Transfer in Gas Metal Arc Welding. Part II: The Metal, / Int. J. Heat Mass Transf., 2007, 50, p 808鈥?20 CrossRef
    26. W. Zhang, J.W. Elmer, and T. DebRoy, Modeling and Real Time Mapping of Phases During GTA Welding of 1005 Steel, / Mater. Sci. Eng. A, 2002, 333, p 320鈥?35 CrossRef
    27. J.S. Unfried, C.M. Garz贸n, and J.E. Giraldo, Numerical and Experimental Analysis of Microstructure Evolution During Arc Welding in Armor Plate Steels, / J. Mater. Process. Technol., 2009, 209, p 1688鈥?700 CrossRef
    28. D. Kim, S. Rhee, and H. Park, Modelling and Optimization of a GMA Welding Process by Genetic Algorithm and Response Surface Methodology, / Int. J. Prod. Res., 2002, 40, p 1699鈥?711 CrossRef
    29. D.S. Correia, C.V. Gon莽alves, S.C. Sebasti茫o, Jr., and V.A. Ferraresi, GMAW Welding Optimization Using Genetic Algorithms, / J. Braz. Soc. Mech. Sci. Eng., 2004, 26, p 28鈥?3 CrossRef
    30. H.-Y. Huang, Effects of Activating Flux on the Welded Joint Characteristics in Gas Metal Arc Welding, / Mater. Des., 2010, 31, p 2488鈥?495 CrossRef
    31. B. Ravindra, T. Senthil Kumar, and V. Balasubramanian, Fatigue Life Prediction of Gas Metal Arc Welded Cruciform Joints of AA7075 Aluminium Alloy Failing from Root Region, / Trans. Nonferrous Met. Soc. China, 2011, 21, p 1210鈥?217 CrossRef
    32. K.Y. Benyounis and A.G. Olabi, Optimization of Different Welding Processes Using Statistical and Numerical Approaches: A Reference Guide, / Adv. Eng. Softw., 2008, 39, p 483鈥?96 CrossRef
    33. M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, B.A. Cheeseman, and C. Fountzoulas, Computational Analysis and Experimental Validation of the Ti-6Al-4V Friction Stir Welding Behavior, / J. Eng. Manuf., 2010, 224, p 1鈥?6 CrossRef
    34. M. Grujicic, T. He, G. Arakere, H.V. Yalavarthy, C.-F. Yen, and B.A. Cheeseman, Fully-Coupled Thermo-Mechanical Finite-Element Investigation of Material Evolution During Friction-Stir Welding of AA5083, / J. Eng. Manuf., 2010, 224, p 609鈥?25 CrossRef
    35. M. Grujicic, G. Arakere, H.V. Yalavarthy, T. He, C.-F. Yen, and B.A. Cheeseman, Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding, / J. Mater. Eng. Perform., 2010, 19, p 672鈥?84 CrossRef
    36. M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, and B.A. Cheeseman, Development of a Robust and Cost-Effective Friction Stir Welding Process for Use in Advanced Military Vehicle Structures, / J. Mater. Eng. Perform., 2011, 20, p 11鈥?3 CrossRef
    37. M. Grujicic, G. Arakere, C.-F. Yen, and B.A. Cheeseman, Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys, / J. Mater. Eng. Perform., 2011, 20, p 1097鈥?108 CrossRef
    38. M. Grujicic, G. Arakere, A. Hariharan, and B. Pandurangan, A Concurrent Product-Development Approach for Friction-stir Welded Vehicle-Underbody Structures, / J. Mater. Eng. Perform., 2012, 21, p 437鈥?49 CrossRef
    39. M. Grujicic, G. Arakere, A. Hariharan, and B. Pandurangan, Two-Level Weld-Material Homogenization Approach for Efficient Computational Analysis of Welded Structure Blast Survivability, / J. Mater. Eng. Perform., 2012, 21, p 786鈥?96
    40. M. Grujicic, G. Arakere, B. Pandurangan, J.M. Ochterbeck, C.-F. Yen, B.A. Cheeseman, A.P. Reynolds, and M.A. Sutton, Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys, / J. Mater. Eng. Perform., 2012, 21, p 1824鈥?840 CrossRef
    41. M. Grujicic, B. Pandurangan, C.-F. Yen, and B.A. Cheeseman, Modifications in the AA5083 Johnson-Cook Material Model for Use in Friction Stir Welding Computational Analyses, / J. Mater. Eng. Perform., 2012, 21, p 2207鈥?217 CrossRef
    42. M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, B.A. Cheeseman, and C. Fountzoulas, Statistical Analysis of High-Cycle Fatigue Behavior of Friction Stir Welded AA5083鈥揌321, / J. Mater. Eng. Perform., 2011, 20, p 855鈥?64
    43. M. Grujicic, B. Pandurangan, A. Arakere, C-F. Yen, and B.A. Cheeseman, Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures under Ballistic Impact Loading Conditions, / J. Mater. Eng. Perform., 2013, 22, p 30鈥?0
    44. M. Grujicic, R. Yavari, J.S. Snipes, S. Ramaswami, C.-F. Yen, and B.A. Cheeseman, Linear Friction Welding Process Model for Carpenter Custom 465 Martensitic Precipitation-Hardened Stainless Steel, / J. Mater. Eng. Perform., 2014, 23, p 2182鈥?198
    45. M. Grujicic, R. Yavari, J.S. Snipes, and S. Ramaswami, A Linear Friction Welding Process Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel: A Weld-Microstructure Evolution Analysis, / J. Eng. Manuf., 2014. doi:10.1177/0954405414542137
    46. D.C. Montgomery, / Design and Analysis of Experiments, Wiley Publishers, New York, 2002
    47. P.J. Ross, / Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design, 2nd ed., McGraw-Hill, New York, 1996
    48. M. Grujicic, B. Pandurangan, D.C. Angstadt, K.L. Koudela, and B.A. Cheeseman, Ballistic-Performance Optimization of a Hybrid Carbon-Nanotube /E-glass Reinforced Poly-Vinyl-Ester-Epoxy-Matrix Composite Armor, / J. Mater. Sci., 2007, 42, p 5347鈥?359
    49. FreeQuality.org. http://www.freequality.org/documents/tools/Tagarray_files/tamatrix.htm, Accessed August 1, 2014
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Materials Science
    Tribology, Corrosion and Coatings
    Quality Control, Reliability, Safety and Risk
    Engineering Design
  • 出版者:Springer New York
  • ISSN:1544-1024
文摘
Our recently developed multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process has been upgraded with respect to its predictive capabilities regarding the process optimization for the attainment of maximum ballistic limit within the weld. The original model consists of six modules, each dedicated to handling a specific aspect of the GMAW process, i.e., (a) electro-dynamics of the welding gun; (b) radiation-/convection-controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler metal consumable electrode to the weld; (c) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (d) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; (e) spatial distribution of the as-welded material mechanical properties; and (f) spatial distribution of the material ballistic limit. In the present work, the model is upgraded through the introduction of the seventh module in recognition of the fact that identification of the optimum GMAW process parameters relative to the attainment of the maximum ballistic limit within the weld region entails the use of advanced optimization and statistical sensitivity analysis methods and tools. The upgraded GMAW process model is next applied to the case of butt welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler metal electrodes made of the same material. The predictions of the upgraded GMAW process model pertaining to the spatial distribution of the material microstructure and ballistic limit-controlling mechanical properties within the MIL A46100 butt weld are found to be consistent with general expectations and prior observations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700