Systemic Treatment with Strontium Ranelate Does Not Influence the Healing of Femoral Mid-shaft Defects in Rats
详细信息    查看全文
  • 作者:Jens Bay Vegger ; Annemarie Brüel ; Thomas Givskov Sørensen…
  • 关键词:Rats ; Bone defects ; Bone healing ; Strontium ranelate ; MicroCT ; Biomechanics
  • 刊名:Calcified Tissue International
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:98
  • 期:2
  • 页码:206-214
  • 全文大小:606 KB
  • 参考文献:1.Pipitone PS, Rehman S (2014) Management of traumatic bone loss in the lower extremity. Orthop Clin North Am 45:469–482. doi:10.​1016/​j.​ocl.​2014.​06.​008 CrossRef PubMed
    2.Gaston MS, Simpson AH (2007) Inhibition of fracture healing. J Bone Joint Surg Br 89:1553–1560. doi:10.​1302/​0301-620X.​89B12.​19671 CrossRef PubMed
    3.Wiese A, Pape HC (2010) Bone defects caused by high-energy injuries, bone loss, infected nonunions, and nonunions. Orthop Clin North Am 41:1–4. doi:10.​1016/​j.​ocl.​2009.​07.​003 CrossRef PubMed
    4.Zeckey C, Mommsen P, Andruszkow H et al (2011) The aseptic femoral and tibial shaft non-union in healthy patients—an analysis of the health-related quality of life and the socioeconomic outcome. Open Orthop J 5:193–197. doi:10.​2174/​1874325001105010​193 PubMedCentral CrossRef PubMed
    5.Jørgensen NR, Schwarz P (2011) Effects of anti-osteoporosis medications on fracture healing. Curr Osteoporos Rep 9:149–155. doi:10.​1007/​s11914-011-0065-0 CrossRef PubMed
    6.Larsson S, Fazzalari NL (2014) Anti-osteoporosis therapy and fracture healing. Arch Orthop Trauma Surg 134:291–297. doi:10.​1007/​s00402-012-1558-8 CrossRef PubMed
    7.Gerstenfeld LC, Sacks DJ, Pelis M et al (2009) Comparison of effects of the bisphosphonate alendronate versus the RANKL inhibitor denosumab on murine fracture healing. J Bone Miner Res 24:196–208. doi:10.​1359/​jbmr.​081113 CrossRef PubMed
    8.Peichl P, Holzer LA, Maier R, Holzer G (2011) Parathyroid hormone 1-84 accelerates fracture-healing in pubic bones of elderly osteoporotic women. J Bone Joint Surg Am 93:1583–1587. doi:10.​2106/​JBJS.​J.​01379 CrossRef PubMed
    9.Manabe T, Mori S, Mashiba T et al (2007) Human parathyroid hormone (1-34) accelerates natural fracture healing process in the femoral osteotomy model of cynomolgus monkeys. Bone 40:1475–1482. doi:10.​1016/​j.​bone.​2007.​01.​015 CrossRef PubMed
    10.Campbell EJ, Campbell GM, Hanley DA (2015) The effect of parathyroid hormone and teriparatide on fracture healing. Expert Opin Biol Ther 15:119–129. doi:10.​1517/​14712598.​2015.​977249 CrossRef PubMed
    11.Aspenberg P, Genant HK, Johansson T et al (2010) Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res 25:404–414. doi:10.​1359/​jbmr.​090731 CrossRef PubMed
    12.Marie PJ (2006) Strontium ranelate: a physiological approach for optimizing bone formation and resorption. Bone 38:S10–S14. doi:10.​1016/​j.​bone.​2005.​07.​029 CrossRef PubMed
    13.Bonnelye E, Chabadel A, Saltel F, Jurdic P (2008) Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 42:129–138. doi:10.​1016/​j.​bone.​2007.​08.​043 CrossRef PubMed
    14.Stepan JJ (2013) Strontium ranelate: in search for the mechanism of action. J Bone Miner Metab 31:606–612. doi:10.​1007/​s00774-013-0494-1 CrossRef PubMed
    15.Vegger JB, Nielsen ES, Brüel A, Thomsen JS (2014) Additive effect of PTH (1-34) and zoledronate in the prevention of disuse osteopenia in rats. Bone 66:287–295. doi:10.​1016/​j.​bone.​2014.​06.​020 CrossRef PubMed
    16.Brüel A, Olsen J, Birkedal H et al (2010) Strontium is incorporated into the fracture callus but does not influence the mechanical strength of healing rat fractures. Calcif Tissue Int 88:142–152. doi:10.​1007/​s00223-010-9439-z CrossRef PubMed
    17.Habermann B, Kafchitsas K, Olender G et al (2009) Strontium ranelate enhances callus strength more than PTH 1-34 in an osteoporotic rat model of fracture healing. Calcif Tissue Int 86:82–89. doi:10.​1007/​s00223-009-9317-8 CrossRef PubMed
    18.Brüel A, Vegger JB, Raffalt AC et al (2013) PTH (1-34), but not strontium ranelate counteract loss of trabecular thickness and bone strength in disuse osteopenic rats. Bone 53:51–58. doi:10.​1016/​j.​bone.​2012.​11.​037 CrossRef PubMed
    19.Sikjaer T, Rejnmark L, Thomsen JS et al (2012) Changes in 3-dimensional bone structure indices in hypoparathyroid patients treated with PTH(1-84): a randomized controlled study. J Bone Miner Res 27:781–788. doi:10.​1002/​jbmr.​1493 CrossRef PubMed
    20.Bouxsein ML, Boyd SK, Christiansen BA et al (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25:1468–1486. doi:10.​1002/​jbmr.​141 CrossRef PubMed
    21.Thomsen JS, Laib A, Koller B et al (2005) Stereological measures of trabecular bone structure: comparison of 3D micro computed tomography with 2D histological sections in human proximal tibial bone biopsies. J Microsc 218:171–179. doi:10.​1111/​j.​1365-2818.​2005.​01469.​x CrossRef PubMed
    22.Gundersen HJ, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263CrossRef PubMed
    23.Cebesoy O, Tutar E, Kose KC et al (2007) Effect of strontium ranelate on fracture healing in rat tibia. Jt Bone Spine 74:590–593. doi:10.​1016/​j.​jbspin.​2007.​01.​034 CrossRef
    24.Li YF, Luo E, Feng G et al (2010) Systemic treatment with strontium ranelate promotes tibial fracture healing in ovariectomized rats. Osteoporos Int 21:1889–1897. doi:10.​1007/​s00198-009-1140-6 CrossRef PubMed
    25.Ozturan KE, Demir B, Yucel I et al (2011) Effect of strontium ranelate on fracture healing in the osteoporotic rats. J Orthop Res 29:138–142. doi:10.​1002/​jor.​21204 CrossRef PubMed
    26.Komrakova M, Weidemann A, Dullin C et al (2015) The impact of strontium ranelate on metaphyseal bone healing in ovariectomized Rats. Calcif Tissue Int. doi:10.​1007/​s00223-015-0019-0 PubMed
    27.Lin K, Xia L, Li H et al (2013) Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Biomaterials 34:10028–10042. doi:10.​1016/​j.​biomaterials.​2013.​09.​056 CrossRef PubMed
    28.Thormann U, Ray S, Sommer U et al (2013) Bone formation induced by strontium modified calcium phosphate cement in critical-size metaphyseal fracture defects in ovariectomized rats. Biomaterials 34:8589–8598. doi:10.​1016/​j.​biomaterials.​2013.​07.​036 CrossRef PubMed
    29.Wei L, Ke J, Prasadam I et al (2014) A comparative study of Sr-incorporated mesoporous bioactive glass scaffolds for regeneration of osteopenic bone defects. Osteoporos Int 25:2089–2096. doi:10.​1007/​s00198-014-2735-0 CrossRef PubMed
    30.Zacchetti G, Dayer R, Rizzoli R, Ammann P (2014) Systemic treatment with strontium ranelate accelerates the filling of a bone defect and improves the material level properties of the healing bone. Biomed Res Int 2014:549785. doi:10.​1155/​2014/​549785 PubMedCentral CrossRef PubMed
    31.Komatsu DE, Brune KA, Liu H et al (2009) Longitudinal in vivo analysis of the region-specific efficacy of parathyroid hormone in a rat cortical defect model. Endocrinology 150:1570–1579. doi:10.​1210/​en.​2008-0814 CrossRef PubMed
    32.Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop Relat Res (355 Suppl):S7–21
    33.Monfoulet L, Rabier B, Chassande O, Fricain JC (2010) Drilled hole defects in mouse femur as models of intramembranous cortical and cancellous bone regeneration. Calcif Tissue Int 86:72–81. doi:10.​1007/​s00223-009-9314-y CrossRef PubMed
    34.Ammann P, Shen V, Robin B et al (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res 19:2012–2020. doi:10.​1359/​JBMR.​040906 CrossRef PubMed
    35.Boyd SK, Szabo E, Ammann P (2011) Increased bone strength is associated with improved bone microarchitecture in intact female rats treated with strontium ranelate: A finite element analysis study. Bone 48:1109–1116. doi:10.​1016/​j.​bone.​2011.​01.​004 CrossRef PubMed
    36.Grynpas MD, Hamilton E, Cheung R et al (1996) Strontium increases vertebral bone volume in rats at a low dose that does not induce detectable mineralization defect. Bone 18:253–259. doi:10.​1016/​8756-3282(95)00484-X CrossRef PubMed
    37.Sun P, Cai DH, Li QN et al (2010) Effects of alendronate and strontium ranelate on cancellous and cortical bone mass in glucocorticoid-treated adult rats. Calcif Tissue Int 86:495–501. doi:10.​1007/​s00223-010-9363-2 CrossRef PubMed
    38.Wu Y, Adeeb SM, John Duke M et al (2013) Compositional and material properties of rat bone after bisphosphonate and/or strontium ranelate drug treatment. J Pharm Pharm Sci 16:52–64PubMed
  • 作者单位:Jens Bay Vegger (1)
    Annemarie Brüel (1)
    Thomas Givskov Sørensen (1)
    Jesper Skovhus Thomsen (1)

    1. Department of Biomedicine, Health, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus C, Denmark
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Endocrinology
    Orthopedics
    Cell Biology
  • 出版者:Springer New York
  • ISSN:1432-0827
文摘
Strontium ranelate (SrR) has both bone anabolic and anti-resorption properties and has therefore the potential to increase the healing of bone defects. The aim of the present study was to investigate the effect of systemic treatment with SrR during the healing of cortical bone defects in rats. In addition, the vertebral bodies were examined in order to elucidate the effect of short-term treatment with SrR on intact trabecular bone. Sixty 16-week-old female Wistar rats were randomized into four groups. A cylindrical defect was drilled through the anterior cortex of the mid-femoral diaphysis in both hind limbs. Two of the groups were treated with SrR (900 mg/kg b.w.) mixed into the food and two groups served as controls. The animals were euthanized after either 3 or 8 weeks of treatment. Healing of the defects was analyzed with µCT, mechanical testing, and stereology. Treatment with SrR resulted in increased thickness of the defects after 3 weeks of treatment, whereas no effect on bone volume fraction (BV/TV), mechanical properties (maximum strength and maximum stiffness), periosteal callus volume, or osteoclast-covered bone surfaces (Oc.S/BS) after either 3 or 8 weeks of treatment was found. Furthermore, SrR increased the bone material density (ρ) of the vertebral bodies, and tended to increase BV/TV after 8 weeks of treatment (p = 0.087). The mechanical properties of the vertebral bodies were not influenced by SrR treatment. In conclusion, 3 weeks of treatment with SrR increased the thickness of the healing mid-femoral cortical bone defects in rats, but did not influence BV/TV, mechanical properties, periosteal callus volume, or Oc.S/BS after either 3 or 8 weeks. Furthermore, SrR had no effect on the microstructure and mechanical properties of the vertebral bodies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700