A Method to Measure Moisture Induced Swelling Properties of a Single Wood Cell
详细信息    查看全文
  • 作者:T. Joffre ; P. Isaksson ; P. J. J. Dumont ; S. Rolland du Roscoat…
  • 刊名:Experimental Mechanics
  • 出版年:2016
  • 出版时间:June 2016
  • 年:2016
  • 卷:56
  • 期:5
  • 页码:723-733
  • 全文大小:736 KB
  • 刊物类别:Engineering
  • 刊物主题:Mechanical Engineering
    Theoretical and Applied Mechanics
    Characterization and Evaluation Materials
    Structural Mechanics
    Engineering Fluid Dynamics
    Engineering Design
  • 出版者:Springer Boston
  • ISSN:1741-2765
  • 卷排序:56
文摘
Wood cells constitute the main building block in engineered wood-based materials, whose delimiting property frequently is moisture induced swelling. The hygroexpansion properties of wood cells, technically known as fibers, are used as input in predictive micromechanical models aimed for materials design. Values presented in the literature largely depend on the microfibrillar angle, the geometry of the fiber and limiting modelling assumptions. Synchrotron X-ray micro-computed tomography has recently prompted means for detailed measurements of the geometry of unconstrained individual fibers undergoing moisture-induced swelling, which makes it possible to directly quantify the hygroexpansion properties of the cell wall. In addition to a well-defined three-dimensional geometry, the present approach also accounts for large deformations and the fact that cell-wall stiffness depends on the presence of moisture. A mixed numerical-experimental approach is adopted where a finite-element updating scheme is used to simulate the swelling of an earlywood spruce fiber going from the experimental fiber geometry at 47 % relative humidity to the predicted geometry of the fiber in the wet state at 80 % relative humidity at equilibrium conditions. The hygroexpansion coefficients are identified by comparing the predicted and the experimental three-dimensional fiber geometry in the wet state. The obtained values are 0.17 strain per change in relative humidity transverse to the microfibrils in the cell wall, and 0.014 along the microfibrils.KeywordsWood fiberX-ray microtomographyFinite element methodHygroexpansion

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700