A novel solvothermal route for obtaining strontium titanate nanoparticles
详细信息    查看全文
  • 作者:A. Márquez-Herrera (1)
    Víctor M. Ovando-Medina (2)
    Miguel A. Corona-Rivera (2)
    E. Hernandez-Rodriguez (3)
    M. Zapata-Torres (3)
    E. Campos-Gonzalez (4)
    A. Guillen-Cervantes (4)
    O. Zelaya-Angel (4)
    M. Meléndez-Lira (4)
  • 关键词:Strontium titanate ; Titanium butoxide ; Solvothermal synthesis ; Perovskite ; Nanopowder
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:15
  • 期:4
  • 全文大小:409KB
  • 参考文献:1. Arora A (2004) Ceramics in nanotech revolution. Adv Eng Mater 6:244-47. doi:10.1002/adem.200300532 CrossRef
    2. Chen D, Jiao X, Zhang M (2000) Hydrothermal synthesis of strontium titanate powders with nanometer size derived from different precursors. J Eur Ceram Soc 20:1261-265. doi:10.1016/S0955-2219(00)00003-0 CrossRef
    3. Cheng JG, Tang J, Chu JH, Zhang AJ (2000) Pyroelectric properties in sol–gel derived barium strontium titanate thin films using a highly diluted precursor solution. Appl Phys Lett. doi:10.1063/1.1289038
    4. Dawson WJ (1988) Hydrothermal synthesis of advanced ceramic powders. Am Ceram Soc Bull 67:1673-678
    5. Fuentes S, Zarate RA, Chavez E, Munoz P, D?az-Droguett D, Leyton P (2010) Preparation of SrTiO3 nanomaterial by a sol–gel-hydrothermal method. J Mater Sci 45:1448-452. doi:10.1007/s10853-009-4099-y CrossRef
    6. Fujinami K, Katagiri K, Kamiya J, Hamanaka T, Koumoto K (2010) Sub-10?nm strontium titanate nanocubes highly dispersed in non-polar organic solvents. Nanoscale 2:2080-083. doi:10.1039/c0nr00543f CrossRef
    7. Keis VN, Kozyrev AB, Khazov ML, Sok J, Lee JS (1998) 20?GHz tunable filter based on ferroelectric (Ba, Sr)TiO3 films. Electron Lett 34:1107-109. doi:10.1049/el:19980784 CrossRef
    8. Kirchoefer SW, Pond JM, Carter AC, Chang W, Agarwal KK, Horwitz JS, Chrisey DB (1998) Microwave properties of Sr0.5Ba0.5TiO3 thin-film interdigitated capacitors. Microw Opt Technol Lett 18:168-71. doi:10.1002/(SICI)1098-2760(19980620)18:3<168:AID-MOP3>3.0.CO;2-D CrossRef
    9. Kutty TRN, Vivekanadan R, Murugaraj P (1998) Recipitation of rutile and anatase (TiO2) fine powders and their conversion to MTiO3 (M?=?Ba, Sr, Ca) by the hydrothermal method. Mater Chem Phys 19:533-46. doi:10.1016/0254-0584(88)90045-4 CrossRef
    10. Li Y, Duan X, Liao H, Qian Y (1998) Self-regulation synthesis of nanocrystalline ZnGa2O4 by hydrothermal reaction. Chem Mater 10:17-8. doi:10.1021/cm970557m CrossRef
    11. Liou YC, Wu CT, Chung TC (2007) Synthesis and microstructure of SrTiO3 and BaTiO3 ceramics by a reaction-sintering process. J Mater Sci 42:3580-587. doi:10.1007/s10853-006-0399-7 CrossRef
    12. Liu SJ, Xu CY, Zeng XB, Shi JQ, Zao BF (2002) Preparation of (Ba0.67Sr0.33)TiO3 thin films for the dielectric bolometer mode of uncooled infrared focal plane arrays. Phys Stat Sol 194:64-0. doi:10.1002/1521-396X(200211)194:1<64:AID-PSSA64>3.0.CO;2-1 CrossRef
    13. Lu CH, Lo SY (1997) Lead pyroniobate pyrochlore nanoparticles synthesized via hydrothermal processing. Mater Res Bull 32:371-78. doi:10.1016/S0025-5408(96)00195-X CrossRef
    14. Márquez-Herrera A, Hernández-Rodríguez E, Cruz-Jáuregui MP, Calzadilla-Omaya O, Meléndez-Lira M, Zapata-Torres M (2010) Electrical properties of resistive switches based on Ba1-xSrxTiO3 thin films prepared by RF co-sputtering. Rev Mex Fis 5:401-05
    15. Ranjan R, Hackl R, Chandra A, Schmidbauer E, Trots D, Boysen H (2007) High-temperature relax or ferroelectric behavior in Pr-doped SrTiO3. Phys Rev B 76:224109. doi:10.1103/PhysRevB.76.224109 CrossRef
    16. Rozman M, Drofenik M (1995) Hydrothermal synthesis of manganese zinc ferrites. J Am Ceram Soc 78:2449-455. doi:10.1111/j.1151-2916.1995.tb08684.x CrossRef
    17. Ruckenbauer V, Hau FF, Lu SG, YeUng KM, Mak CL, Wong KH (2004) Characteristics of BaxSr1-xTiO3 thin films grown by pulsed laser ablation of rotating split targets of BaTiO3 and SrTiO3. Appl Phys A 78:1049. doi:10.1007/s00339-003-2154-0 CrossRef
    18. Shi L, Gu Y, Chen L, Qian Y, Yang Z, Ma J (2003) A low temperature synthesis of crystalline B4C ultrafine powders. Solid State Commun 128:5-. doi:10.1016/S0038-1098(03)00627-6 CrossRef
    19. Shi L, Xu Y, Li Q (2009) Shape-selective synthesis and optical properties of highly ordered one-dimensional ZnS nanostructures. Cryst Growth Des 9:2214-219. doi:10.1021/cg800929h CrossRef
    20. Shi L, Pei C, Li Q (2010) Ordered arrays of shape tunable CulnS2 nanostrutures, from nanotubes to nano test tubes and nanowires. Nanoscale 2:2126-130. doi:10.1039/c0nr00341g CrossRef
    21. Shi L, Pei C, Xu Y, Li Q (2011) Template-directed synthesis of ordered single-crystalline nanowires arrays of Cu2ZnSnS4 and Cu2ZnSnSe4. J Am Chem Soc 133:10328-0331. doi:10.1021/ja201740w CrossRef
    22. Tatiane MA, Giovanni PM, Daniel GS, Edson RL, Elson L, Antonio JR, Emerson RC (2010) Stable colloidal suspensions of nanostructured zirconium oxide synthesized by hydrothermal process. J Nanopart Res 12:3105-110. doi:10.1007/s11051-010-9906-5 CrossRef
    23. Wang X, Lu X, Weng Y, Cai W, Wu X, Liu Y, Huang F, Zhu J (2010) Improved electrical properties of Pr-doped SrTiO3 films. Solid State Commun 150:267-70. doi:10.1016/j.ssc.2009.11.010 CrossRef
    24. Yoshimura M, Byrappa K (2008) Hydrothermal processing of materials: past, present and future. J Mater Sci 43:2085-103. doi:10.1007/s10853-007-1853-x CrossRef
    25. Zapata-Navarro A, Márquez-Herrera A, Cruz-Jáuregui MP, Calzada ML (2005) Ferroelectric properties of barium strontium titanate thin films grown by RF co-sputtering. Phys Stat Sol 2:3673. doi:10.1002/pssc.200461712 CrossRef
    26. Zhang S, Liu J, Han Y, Chen B, Li X (2004) Formation mechanisms of SrTiO3 nanoparticles under hydrothermal conditions. J Mater Sci Eng B 110:11-7. doi:10.1016/j.mseb.2004.01.017 CrossRef
  • 作者单位:A. Márquez-Herrera (1)
    Víctor M. Ovando-Medina (2)
    Miguel A. Corona-Rivera (2)
    E. Hernandez-Rodriguez (3)
    M. Zapata-Torres (3)
    E. Campos-Gonzalez (4)
    A. Guillen-Cervantes (4)
    O. Zelaya-Angel (4)
    M. Meléndez-Lira (4)

    1. Departamento de Ingeniería Mecánica Administrativa, Coordinación Académica Región Altiplano (COARA), Universidad Autónoma de San Luis Potosí, Carretera a Cedral KM 5+600, San José de las Trojes, 78700, Matehuala, S.L.P., Mexico
    2. Departamento de Ingeniería Química, Coordinación Académica Región Altiplano (COARA), Universidad Autónoma de San Luis Potosí, Carretera a Cedral KM 5+600, San José de las Trojes, 78700, Matehuala, S.L.P., Mexico
    3. Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaría IPN, Calzada Legaría 694, Col. Irrigación, 11500, México, D.F., Mexico
    4. Departamento de Física, CINVESTAV-IPN, Apartado Postal 14-740, 07000, México, D.F., México
  • ISSN:1572-896X
文摘
Strontium titanate (SrTiO3) has attracted a lot of attention because of its possible applications in new microelectronic devices. It is a material with a high dielectric constant, low leakage current, and some of its properties can be changed by adding or modifying the concentration of a dopant, which can be used for a wide range of functional purposes, from simple capacitors to complicated microwave devices. Therefore, in this work, we report the development of a new route to synthesize SrTiO3 nanoparticles based on the solvothermal method by employing two precursor solutions: strontium chloride and titanium(IV) butoxide. Our route allows the production of cubic SrTiO3 nanoparticles with a narrow size distribution. The particle sizes range between 8 and 24?nm, forming agglomerates of SrTiO3 in the range of 128-29?nm. It was demonstrated that the Ti/Sr molar ratio employed into the precursor solution has an important effect onto the chemical composition of the resulting SrTiO3 nanoparticles: when using Ti/Sr?<?1, the formation and incorporation of the SrCO3 compound into the nanoparticles was observed while with Ti/Sr?≥? nanoparticles are free of contaminants. The as-prepared nanoparticles were characterized by energy-dispersive X-ray spectroscopy, X-ray diffraction, transmission electron microscopy, high-resolution TEM, selected area electron diffraction, scanning electron microscopy, and dynamic light scattering.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700