Utilization of digital image correlation in determining of both longitudinal shear moduli of wood at single torsion test
详细信息    查看全文
  • 作者:Martin Brabec ; Rastislav Lagaňa ; Jaromír Milch ; Jan Tippner…
  • 刊名:Wood Science and Technology
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:51
  • 期:1
  • 页码:29-45
  • 全文大小:
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Wood Science & Technology; Ceramics, Glass, Composites, Natural Materials; Operating Procedures, Materials Treatment;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-5225
  • 卷排序:51
文摘
A sophisticated approach for the precise determination of both longitudinal shear moduli of wood at single test is introduced. The method is based on the combination of the torsion test inducing pure shear stresses in sample and an optical method providing the full-field strain data of such stress state. The proposed procedure of the longitudinal shear moduli determination consists of two main steps. In the first step, the apparent longitudinal shear modulus following the standardized procedure (EN 408+A1) was determined. Secondly, both longitudinal shear moduli were derived based on the apparent longitudinal shear modulus and the shear strain distribution on the radial and tangential sample surfaces. The wood of European beech (Fagus sylvatica L.) was used as material for the experiments. The exploratory analysis revealed the increasing difference between the longitudinal shear moduli determined in the longitudinal–radial plane and in the longitudinal–tangential plane as the total torsion angle increased as well as with the increase in the average torsion stiffness. Further, the longitudinal shear moduli and the torsional longitudinal shear strength did not correlate well. Therefore, they cannot be used in order to predict each other. Although such findings need more detailed studies, they should be taken into account when designing wood structures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700