Discovering functional modules by identifying recurrent and mutually exclusive mutational patterns in tumors
详细信息    查看全文
  • 作者:Christopher A Miller (1)
    Stephen H Settle (2) (3) (6)
    Erik P Sulman (3)
    Kenneth D Aldape (4)
    Aleksandar Milosavljevic (5)
  • 刊名:BMC Medical Genomics
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:4
  • 期:1
  • 全文大小:2267KB
  • 参考文献:1. Cancer Genome Atlas Consortium: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. / Nature 2008, 455:1061鈥?068. CrossRef
    2. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. / Proceedings of the National Academy of Sciences of the United States of America 1998, 95:14863鈥?4868. CrossRef
    3. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A: Reverse engineering of regulatory networks in human B cells. / Nat Genet 2005, 37:382鈥?90. CrossRef
    4. Segal E, Friedman N, Koller D, Regev A: A module map showing conditional activity of expression modules in cancer. / Nat Genet 2004, 36:1090鈥?098. CrossRef
    5. Masayesva BG, Ha P, Garrett-Mayer E, Pilkington T, Mao R, Pevsner J, Speed T, Benoit N, Moon C, Sidransky D, Westra WH, Califano J: Gene expression alterations over large chromosomal regions in cancers include multiple genes unrelated to malignant progression. / Proceedings of the National Academy of Sciences of the United States of America 2004, 101:8715鈥?720. CrossRef
    6. Miklos GLG, Maleszka R: Microarray reality checks in the context of a complex disease. / Nat Biotechnol 2004, 22:615鈥?21. CrossRef
    7. Tong AHY, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost RL, Chang M, Chen Y, Cheng X, Chua G, Friesen H, Goldberg DS, Haynes J, Humphries C, He G, Hussein S, Ke L, Krogan N, Li Z, Levinson JN, Lu H, Menard P, Munyana C, Parsons AB, Ryan O, Tonikian R, Roberts T, Sdicu A, Shapiro J, Sheikh B, Suter B, Wong SL, Zhang LV, Zhu H, Burd CG, Munro S, Sander C, Rine J, Greenblatt J, Peter M, Bretscher A, Bell G, Roth FP, Brown GW, Andrews B, Bussey H, Boone C: Global Mapping of the Yeast Genetic Interaction Network. / Science 2004, 303:808鈥?13. CrossRef
    8. Gazdar AF, Shigematsu H, Herz J, Minna JD: Mutations and addiction to EGFR : the Achilles 'heal' of lung cancers? / Trends Mol Med 2004, 10:481鈥?86. CrossRef
    9. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun X, Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM: Recurrent Fusion of TMPRSS2 and ETS Transcription Factor Genes in Prostate Cancer. / Science 2005, 310:644鈥?48. CrossRef
    10. Momand J, Zambetti GP, Olson DC, George D, Levine AJ: The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. / Cell 1992, 69:1237鈥?245. CrossRef
    11. Yeang C, McCormick F, Levine A: Combinatorial patterns of somatic gene mutations in cancer. / FASEB J 2008, 22:2605鈥?622. CrossRef
    12. Ross SM: / Introduction to Probability Models, Seventh Edition. 7th edition. Academic Press; 2000.
    13. Olshen AB, Venkatraman ES, Lucito R, Wigler M: Circular binary segmentation for the analysis of array-based DNA copy number data. / Biostatistics 2004, 5:557鈥?72. CrossRef
    14. Taylor BS, Barretina J, Socci ND, DeCarolis P, Ladanyi M, Meyerson M, Singer S, Sander C: Functional Copy-Number Alterations in Cancer. / PLoS ONE 2008, 3:e3179. CrossRef
    15. Littlestone N: Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold Algorithm. / Mach. Learn 1988, 2:285鈥?18.
    16. Milosavljevic A, Jurka J: Discovering simple DNA sequences by the algorithmic significance method. / Comput Appl Biosci 1993,9(4):407鈥?11.
    17. Karplus K: Using markov models and hidden markov models to find repetitive extragenic palindromic sequences in Escherichia Coli. / Technical Report UCSC-CRL-94鈥?4 1994.
    18. Mitrophanov AY, Borodovsky M: Statistical significance in biological sequence analysis. / Brief Bioinform 2006, 7:2鈥?4. CrossRef
    19. Eddy SR: A Probabilistic Model of Local Sequence Alignment That Simplifies Statistical Significance Estimation. / PLoS Comput Biol 2008, 4:e1000069. CrossRef
    20. Giancarlo R, Scaturro D, Utro F: Textual data compression in computational biology: a synopsis. / Bioinformatics 2009, 25:1575鈥?586. CrossRef
    21. Milosavljevic A: Discovering Dependencies via Algorithmic Mutual Information: A Case Study in DNA Sequence Comparisons. / Mach. Learn 1995, 21:35鈥?0.
    22. Gravendeel LA, Kouwenhoven MC, Gevaert O, de Rooi JJ, Stubbs AP, Duijm JE, Daemen A, Bleeker FE, Bralten LB, Kloosterhof NK, De Moor B, Eilers PH, van der Spek PJ, Kros JM, Sillevis Smitt PA, van den Bent MJ, French PJ: Intrinsic Gene Expression Profiles of Gliomas Are a Better Predictor of Survival than Histology. / Cancer Res 2009, 69:9065鈥?072. CrossRef
    23. Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, Bunney WE, Myers RM, Speed TP, Akil H, Watson SJ, Meng F: Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. / Nucleic Acids Res 2005, 33:e175-e175. CrossRef
    24. Kaplan EL, Meier P: Nonparametric estimation from incomplete observations. / J.of the American Statistical Association 1958, 53:457鈥?8. CrossRef
    25. Cox DR: Regression models and life tables. / J Royal Stat Soc 1972, 34:187鈥?20.
    26. Levine AJ: p53, the cellular gatekeeper for growth and division. / Cell 1997, 88:323鈥?31. CrossRef
    27. Dornan D, Shimizu H, Perkins ND, Hupp TR: DNA-dependent acetylation of p53 by the transcription coactivator p300. / J. Biol. Chem 2003, 278:13431鈥?3441. CrossRef
    28. Goldman R, Levy RB, Peles E, Yarden Y: Heterodimerization of the erbB-1 and erbB-2 receptors in human breast carcinoma cells: a mechanism for receptor transregulation. / Biochemistry 1990, 29:11024鈥?1028. CrossRef
    29. Kim H, Huang W, Jiang X, Pennicooke B, Park PJ, Johnson MD: Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. / Proceedings of the National Academy of Sciences 2010, 107:2183鈥?188. CrossRef
    30. Sulman EP, Guerrero M, Aldape K: Beyond Grade: Molecular Pathology of Malignant Gliomas. / Seminars in Radiation Oncology 2009, 19:142鈥?49. CrossRef
    31. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1755-8794/4/34/prepub
  • 作者单位:Christopher A Miller (1)
    Stephen H Settle (2) (3) (6)
    Erik P Sulman (3)
    Kenneth D Aldape (4)
    Aleksandar Milosavljevic (5)

    1. Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, USA
    2. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
    3. Department of Radiation Oncology, the University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
    6. Department of Radiation Oncology, the University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
    4. Department of Pathology, the University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
    5. Graduate Program in Structural and Computational Biology and Molecular Biophysics; and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
  • ISSN:1755-8794
文摘
Background Assays of multiple tumor samples frequently reveal recurrent genomic aberrations, including point mutations and copy-number alterations, that affect individual genes. Analyses that extend beyond single genes are often restricted to examining pathways, interactions and functional modules that are already known. Methods We present a method that identifies functional modules without any information other than patterns of recurrent and mutually exclusive aberrations (RME patterns) that arise due to positive selection for key cancer phenotypes. Our algorithm efficiently constructs and searches networks of potential interactions and identifies significant modules (RME modules) by using the algorithmic significance test. Results We apply the method to the TCGA collection of 145 glioblastoma samples, resulting in extension of known pathways and discovery of new functional modules. The method predicts a role for EP300 that was previously unknown in glioblastoma. We demonstrate the clinical relevance of these results by validating that expression of EP300 is prognostic, predicting survival independent of age at diagnosis and tumor grade. Conclusions We have developed a sensitive, simple, and fast method for automatically detecting functional modules in tumors based solely on patterns of recurrent genomic aberration. Due to its ability to analyze very large amounts of diverse data, we expect it to be increasingly useful when applied to the many tumor panels scheduled to be assayed in the near future.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700