Song exposure regulates known and novel microRNAs in the zebra finch auditory forebrain
详细信息    查看全文
  • 作者:Preethi H Gunaratne (1) (2) (3)
    Ya-Chi Lin (4)
    Ashley L Benham (1)
    Jenny Drnevich (5)
    Cristian Coarfa (11)
    Jayantha B Tennakoon (1)
    Chad J Creighton (6)
    Jong H Kim (1)
    Aleksandar Milosavljevic (11)
    Michael Watson (7)
    Sam Griffiths-Jones (8)
    David F Clayton (10) (4) (9)
  • 刊名:BMC Genomics
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:12
  • 期:1
  • 全文大小:1365KB
  • 参考文献:1. Clayton DF, Balakrishnan CN, London SE: Integrating genomes, brain and behavior in the study of songbirds. / Curr Biol 2009,19(18):R865鈥?73. CrossRef
    2. Jarvis ED: Learned birdsong and the neurobiology of human language. / Ann N Y Acad Sci 2004, 1016:749鈥?77. CrossRef
    3. Miller DB: Acoustic Basis of Mate Recognition by Female Zebra Finches (Taeniopygia-Guttata). / Animal Behaviour 1979,27(May):376鈥?80. CrossRef
    4. Miller DB: Long-Term Recognition of Fathers Song by Female Zebra Finches. / Nature 1979,280(5721):389鈥?91. CrossRef
    5. Clayton NS: Song Discrimination-Learning in Zebra Finches. / Animal Behaviour 1988, 36:1016鈥?024. CrossRef
    6. Stripling R, Kruse AA, Clayton DF: Development of song responses in the zebra finch caudomedial neostriatum: Role of genomic and electrophysiological activities. / Journal of Neurobiology 2001,48(3):163鈥?80. CrossRef
    7. Mello CV, Vicario DS, Clayton DF: Song presentation induces gene expression in the songbird forebrain. / Proc Natl Acad Sci USA 1992,89(15):6818鈥?822. CrossRef
    8. Mello C, Nottebohm F, Clayton D: Repeated exposure to one song leads to a rapid and persistent decline in an immediate early gene's response to that song in zebra finch telencephalon. / J Neurosci 1995,15(10):6919鈥?925.
    9. Jarvis ED, Scharff C, Grossman MR, Ramos JA, Nottebohm F: For whom the bird sings: context-dependent gene expression. / Neuron 1998,21(4):775鈥?88. CrossRef
    10. Clayton DF: The genomic action potential. / Neurobiol Learn Mem 2000,74(3):185鈥?16. CrossRef
    11. Kruse AA, Stripling R, Clayton DF: Context-specific habituation of the zenk gene response to song in adult zebra finches. / Neurobiol Learn Mem 2004,82(2):99鈥?08. CrossRef
    12. Vignal C, Andru J, Mathevon N: Social context modulates behavioural and brain immediate early gene responses to sound in male songbird. / Eur J Neurosci 2005,22(4):949鈥?55. CrossRef
    13. Woolley SC, Doupe AJ: Social context-induced song variation affects female behavior and gene expression. / PLoS Biol 2008,6(3):e62. CrossRef
    14. Dong S, Replogle KL, Hasadsri L, Imai BS, Yau PM, Rodriguez-Zas S, Southey BR, Sweedler JV, Clayton DF: Discrete molecular states in the brain accompany changing responses to a vocal signal. / Proc Natl Acad Sci USA 2009,106(27):11364鈥?1369. CrossRef
    15. London SE, Dong S, Replogle K, Clayton DF: Developmental shifts in gene expression in the auditory forebrain during the sensitive period for song learning. / Dev Neurobiol 2009,69(7):437鈥?50. CrossRef
    16. Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH: Noncoding RNAs in the mammalian central nervous system. / Annu Rev Neurosci 2006, 29:77鈥?03. CrossRef
    17. Ason B, Darnell DK, Wittbrodt B, Berezikov E, Kloosterman WP, Wittbrodt J, Antin PB, Plasterk RH: Differences in vertebrate microRNA expression. / Proc Natl Acad Sci USA 2006,103(39):14385鈥?4389. CrossRef
    18. Berezikov E, Thuemmler F, van Laake LW, Kondova I, Bontrop R, Cuppen E, Plasterk RH: Diversity of microRNAs in human and chimpanzee brain. / Nat Genet 2006,38(12):1375鈥?377. CrossRef
    19. Bak M, Silahtaroglu A, Moller M, Christensen M, Rath MF, Skryabin B, Tommerup N, Kauppinen S: MicroRNA expression in the adult mouse central nervous system. / RNA 2008,14(3):432鈥?44. CrossRef
    20. Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS: A microRNA array reveals extensive regulation of microRNAs during brain development. / RNA 2003,9(10):1274鈥?281. CrossRef
    21. Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, Constantine-Paton M, Horvitz HR: Microarray analysis of microRNA expression in the developing mammalian brain. / Genome Biol 2004,5(9):R68. CrossRef
    22. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V: Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. / Genome Biol 2004,5(3):R13. CrossRef
    23. Li N, Bates DJ, An J, Terry DA, Wang E: Up-regulation of key microRNAs, and inverse down-regulation of their predicted oxidative phosphorylation target genes, during aging in mouse brain. / Neurobiol Aging 2009.
    24. Schratt G: Fine-tuning neural gene expression with microRNAs. / Curr Opin Neurobiol 2009,19(2):213鈥?19. CrossRef
    25. Cheng HY, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, Nakazawa T, Shimizu K, Okamura H, Impey S, / et al.: microRNA modulation of circadian-clock period and entrainment. / Neuron 2007,54(5):813鈥?29. CrossRef
    26. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME: A brain-specific microRNA regulates dendritic spine development. / Nature 2006,439(7074):283鈥?89. CrossRef
    27. Fiore R, Khudayberdiev S, Christensen M, Siegel G, Flavell SW, Kim TK, Greenberg ME, Schratt G: Mef2-mediated transcription of the miR379鈥?10 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. / EMBO J 2009,28(6):697鈥?10. CrossRef
    28. Creighton CJ, Reid JG, Gunaratne PH: Expression profiling of microRNAs by deep sequencing. / Brief Bioinform 2009,10(5):490鈥?97. CrossRef
    29. Reid JG, Nagaraja AK, Lynn FC, Drabek RB, Muzny DM, Shaw CA, Weiss MK, Naghavi AO, Khan M, Zhu H, / et al.: Mouse let-7 miRNA populations exhibit RNA editing that is constrained in the 5'-seed/cleavage/anchor regions and stabilize predicted mmu-let-7a:mRNA duplexes. / Genome Res 2008,18(10):1571鈥?581. CrossRef
    30. Morin RD, O'Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, Zhao Y, McDonald H, Zeng T, Hirst M, / et al.: Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. / Genome Res 2008,18(4):610鈥?21. CrossRef
    31. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, / et al.: A mammalian microRNA expression atlas based on small RNA library sequencing. / Cell 2007,129(7):1401鈥?414. CrossRef
    32. Lee RC, Ambros V: An extensive class of small RNAs in Caenorhabditis elegans. / Science 2001,294(5543):862鈥?64. CrossRef
    33. Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Kunstner A, Searle S, White S, Vilella AJ, Fairley S, / et al.: The genome of a songbird. / Nature 2010,464(7289):757鈥?62. CrossRef
    34. Park KH, Clayton DF: Influence of restraint and acute isolation on the selectivity of the adult zebra finch zenk gene response to acoustic stimuli. / Behav Brain Res 2002,136(1):185鈥?91. CrossRef
    35. Bailey D, Wade J: Differential expression of the immediate early genes FOS and ZENK following auditory stimulation in the juvenile male and female zebra finch. / Brain Res Mol Brain Res 2003,116(1鈥?):147鈥?54. CrossRef
    36. K鈭毬皀stner A, Wolf JBW, Backstr鈭氣垈m N, Whitney O, Balakrishnan CN, Day L, Edwards SV, Janes DE, Schlinger BA, Wilson RK, / et al.: Comparative genomics based on massive parallel transcriptome sequencing reveals patterns of substitution and selection across 10 bird species. / Molecular Ecology 2010,19(SUPPL. 1):266鈥?76. CrossRef
    37. Itoh Y, Melamed E, Yang X, Kampf K, Wang S, Yehya N, Van Nas A, Replogle K, Band MR, Clayton DF, / et al.: Dosage compensation is less effective in birds than in mammals. / J Biol 2007,6(1):2. CrossRef
    38. Itoh Y, Replogle K, Kim YH, Wade J, Clayton DF, Arnold AP: Sex bias and dosage compensation in the zebra finch versus chicken genomes: General and specialized patterns among birds. / Genome Research 2010,20(4):512鈥?18. CrossRef
    39. Bartel DP: MicroRNAs: target recognition and regulatory functions. / Cell 2009,136(2):215鈥?33. CrossRef
    40. Li X, Wang XJ, Tannenhauser J, Podell S, Mukherjee P, Hertel M, Biane J, Masuda S, Nottebohm F, Gaasterland T: Genomic resources for songbird research and their use in characterizing gene expression during brain development. / Proc Natl Acad Sci USA 2007,104(16):6834鈥?839. CrossRef
    41. Chandrasekar V, Dreyer JL: microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity. / Mol Cell Neurosci 2009,42(4):350鈥?62. CrossRef
    42. Visvanathan J, Lee S, Lee B, Lee JW, Lee SK: The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. / Genes Dev 2007,21(7):744鈥?49. CrossRef
    43. Cheng LC, Pastrana E, Tavazoie M, Doetsch F: miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. / Nat Neurosci 2009,12(4):399鈥?08. CrossRef
    44. Yu JY, Chung KH, Deo M, Thompson RC, Turner DL: MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. / Exp Cell Res 2008,314(14):2618鈥?633. CrossRef
    45. Goldman SA, Nottebohm F: Neuronal production, migration and differentiation in a vocal control nucleus of the adult female canary brain. / Proceedings of the National Academy of Sciences of the United States of America 1983, 80:2390鈥?394. CrossRef
    46. Alvarez-Buylla A, Theelen M, Nottebohm F: Proliferation "hot spots" in adult avian ventricular zone reveal radial cell division. / Neuron 1990,5(1):101鈥?09. CrossRef
    47. Alvarez-Buylla A, Kirn JR: Birth, migration, incorporation, and death of vocal control neurons in adult songbirds. / Journal of Neurobiology 1997, 33:585鈥?01. CrossRef
    48. Barnea A: Interactions between environmental changes and brain plasticity in birds. / General and Comparative Endocrinology 2009,163(1鈥?):128鈥?34. CrossRef
    49. Kirn JR: The relationship of neurogenesis and growth of brain regions to song learning. / Brain and Language 2010,115(1):29鈥?4. CrossRef
    50. Nottebohm F, O'Loughlin B, Gould K, Yohay K, Alvarez-Buylla A: The life span of new neurons in a song control nucleus of the adult canary brain depends on time of year when these cells are born. / Proceedings of the National Academy of Sciences of the United States of America 1994,91(17):7849鈥?853. CrossRef
    51. Wilbrecht L, Crionas A, Nottebohm F: Experience affects recruitment of new neurons but not adult neuron number. / Journal of Neuroscience 2002,22(3):825鈥?31.
    52. Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. / Cell 2005,120(1):15鈥?0. CrossRef
    53. Levine TD, Gao F, King PH, Andrews LG, Keene JD: Hel-N1: an autoimmune RNA-binding protein with specificity for 3' uridylate-rich untranslated regions of growth factor mRNAs. / Mol Cell Biol 1993,13(6):3494鈥?504.
    54. Abe R, Yamamoto K, Sakamoto H: Target specificity of neuronal RNA-binding protein, Mel-N1: direct binding to the 3' untranslated region of its own mRNA. / Nucleic Acids Res 1996,24(11):2011鈥?016. CrossRef
    55. Ma WJ, Chung S, Furneaux H: The Elav-like proteins bind to AU-rich elements and to the poly(A) tail of mRNA. / Nucleic Acids Res 1997,25(18):3564鈥?569. CrossRef
    56. Akamatsu W, Okano HJ, Osumi N, Inoue T, Nakamura S, Sakakibara S, Miura M, Matsuo N, Darnell RB, Okano H: Mammalian ELAV-like neuronal RNA-binding proteins HuB and HuC promote neuronal development in both the central and the peripheral nervous systems. / Proc Natl Acad Sci USA 1999,96(17):9885鈥?890. CrossRef
    57. Hambardzumyan D, Sergent-Tanguy S, Thinard R, Bonnamain V, Masip M, Fabre A, Boudin H, Neveu I, Naveilhan P: AUF1 and Hu proteins in the developing rat brain: implication in the proliferation and differentiation of neural progenitors. / J Neurosci Res 2009,87(6):1296鈥?309. CrossRef
    58. Sillje HH, Takahashi K, Tanaka K, Van Houwe G, Nigg EA: Mammalian homologues of the plant Tousled gene code for cell-cycle-regulated kinases with maximal activities linked to ongoing DNA replication. / EMBO J 1999,18(20):5691鈥?702. CrossRef
    59. Sillje HH, Nigg EA: Identification of human Asf1 chromatin assembly factors as substrates of Tousled-like kinases. / Curr Biol 2001,11(13):1068鈥?073. CrossRef
    60. Blackwell TK, Walker AK: Transcription elongation: TLKing to chromatin? / Curr Biol 2003,13(23):R915鈥?16. CrossRef
    61. Carrera P, Moshkin YM, Gronke S, Sillje HH, Nigg EA, Jackle H, Karch F: Tousled-like kinase functions with the chromatin assembly pathway regulating nuclear divisions. / Genes Dev 2003,17(20):2578鈥?590. CrossRef
    62. Rouault JP, Puisieux A, Samarut C, Guehenneux F, Berthet C, Rimokh R, Falette N, Magaud JP: Involvement of the BTG genes family in the control of cell cycle and DNA repair. / Experimental Hematology 1997,25(8):229鈥?29.
    63. Corjay MH, Kearney MA, Munzer DA, Diamond SM, Stoltenborg JK: Antiproliferative gene BTG1 is highly expressed in apoptotic cells in macrophage-rich areas of advanced lesions in Watanabe heritable hyperlipidemic rabbit and human. / Laboratory Investigation 1998,78(7):847鈥?58.
    64. Li F, Liu J, Park ES, Jo M, Curry TE Jr: The B cell translocation gene (BTG) family in the rat ovary: hormonal induction, regulation, and impact on cell cycle kinetics. / Endocrinology 2009,150(8):3894鈥?902. CrossRef
    65. Hall JA, Georgel PT: CHD proteins: a diverse family with strong ties. / Biochem Cell Biol 2007,85(4):463鈥?76. CrossRef
    66. Marfella CG, Imbalzano AN: The Chd family of chromatin remodelers. / Mutat Res 2007,618(1鈥?):30鈥?0.
    67. Bandres E, Malumbres R, Cubedo E, Honorato B, Zarate R, Labarga A, Gabisu U, Sola JJ, Garcia-Foncillas J: A gene signature of 8 genes could identify the risk of recurrence and progression in Dukes' B colon cancer patients. / Oncology Reports 2007,17(5):1089鈥?094.
    68. Kulkarni S, Nagarajan P, Wall J, Donovan DJ, Donell RL, Ligon AH, Venkatachalam S, Quade BJ: Disruption of chromodomain helicase DNA binding protein 2 (CHD2) causes scoliosis. / Am J Med Genet A 2008,146A(9):1117鈥?127. CrossRef
    69. Nagarajan P, Onami TM, Rajagopalan S, Kania S, Donnell R, Venkatachalam S: Role of chromodomain helicase DNA-binding protein 2 in DNA damage response signaling and tumorigenesis. / Oncogene 2009,28(8):1053鈥?062. CrossRef
    70. Bustin M, Reeves R: High-mobility-group chromosomal proteins: Architectural components that facilitate chromatin function. / Progress in Nucleic Acid Research and Molecular Biology 1996, 54:35鈥?00. Vol 54 CrossRef
    71. Grasser KD: HMG1 and HU proteins: architectural elements in plant chromatin. / Trends in Plant Science 1998,3(7):260鈥?65. CrossRef
    72. Hall J, Thomas KL, Everitt BJ: Cellular imaging of zif268 expression in the hippocampus and amygdala during contextual and cued fear memory retrieval: Selective activation of hippocampal CA1 neurons during the recall of contextual memories. / Journal of Neuroscience 2001,21(6):2186鈥?193.
    73. Bustin M: At the crossroads of necrosis and apoptosis: signaling to multiple cellular targets by HMGB1. / Sci STKE 2002,2002(151):pe39. CrossRef
    74. Guazzi S, Strangio A, Franzi AT, Bianchi ME: HMGB1, an architectural chromatin protein and extracellular signalling factor, has a spatially and temporally restricted expression pattern in mouse brain. / Gene Expression Patterns 2003,3(1):29鈥?3. CrossRef
    75. Bassi R, Giussani P, Anelli V, Colleoni T, Pedrazzi M, Patrone M, Viani P, Sparatore B, Melloni E, Riboni L: HMGB1 as an autocrine stimulus in human T98G glioblastoma cells: role in cell growth and migration. / Journal of Neuro-Oncology 2008,87(1):23鈥?3. CrossRef
    76. Ballif BA, Arnaud L, Arthur WT, Guris D, Imamoto A, Cooper JA: Activation of a Dab1/CrkL/C3G/Rap1 pathway in Reelin-stimulated neurons. / Curr Biol 2004,14(7):606鈥?10. CrossRef
    77. Yip YP, Kronstadt-O'Brien P, Capriotti C, Cooper JA, Yip JW: Migration of sympathetic preganglionic neurons in the spinal cord is regulated by reelin-dependent Dab1 tyrosine phosphorylation and CrkL. / Journal of Comparative Neurology 2007,502(4):635鈥?43. CrossRef
    78. Matsuki T, Pramatarova A, Howell BW: Reduction of Crk and CrkL expression blocks reelin-induced dendritogenesis. / J Cell Sci 2008,121(Pt 11):1869鈥?875. CrossRef
    79. Hubbard TJ, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y, Clapham P, Clarke L, / et al.: Ensembl 2009. / Nucleic Acids Res 2009,37(Database):D690鈥?97. CrossRef
    80. Brennan PA, Schellinck HM, Keverne EB: Patterns of expression of the immediate-early gene egr-1 in the accessory olfactory bulb of female mice exposed to pheromonal constituents of male urine. / Neuroscience 1999,90(4):1463鈥?470. CrossRef
    81. Schafer M, Brauer AU, Savaskan NE, Rathjen FG, Brummendorf T: Neurotractin/kilon promotes neurite outgrowth and is expressed on reactive astrocytes after entorhinal cortex lesion. / Molecular and Cellular Neuroscience 2005,29(4):580鈥?90. CrossRef
    82. Hashimoto T, Yamada M, Maekawa S, Nakashima T, Miyata S: IgLON cell adhesion molecule Kilon is a crucial modulator for synapse number in hippocampal neurons. / Brain Research 2008, 1224:1鈥?1. CrossRef
    83. Ishii N, Wanaka A, Tohyama M: Increased expression of NLRR-3 mRNA after cortical brain injury in mouse. / Brain Res Mol Brain Res 1996,40(1):148鈥?52. CrossRef
    84. Bormann P, Roth LWA, Andel D, Ackermann M, Reinhard E: zfNLRR, a novel leucine-rich repeat protein is preferentially expressed during regeneration in zebrafish. / Molecular and Cellular Neuroscience 1999,13(3):167鈥?79. CrossRef
    85. Josephson A, Trifunovski A, Scheele C, Widenfalk J, Wahlestedt C, Brene S, Olson L, Spenger C: Activity-induced and developmental downregulation of the Nogo receptor. / Cell Tissue Res 2003,311(3):333鈥?42.
    86. Endo T, Spenger C, Tominaga T, Brene S, Olson L: Cortical sensory map rearrangement after spinal cord injury: fMRI responses linked to Nogo signalling. / Brain 2007,130(Pt 11):2951鈥?961. CrossRef
    87. Dong S, Clayton DF: Habituation in songbirds. / Neurobiol Learn Mem 2009,92(2):183鈥?88. CrossRef
    88. Replogle K, Arnold AP, Ball GF, Band M, Bensch S, Brenowitz EA, Dong S, Drnevich J, Ferris M, George JM, / et al.: The Songbird Neurogenomics (SoNG) Initiative: community-based tools and strategies for study of brain gene function and evolution. / BMC Genomics 2008, 9:131. CrossRef
    89. Cheng HY, Clayton DF: Activation and habituation of extracellular signal-regulated kinase phosphorylation in zebra finch auditory forebrain during song presentation. / Journal of Neuroscience 2004,24(34):7503鈥?513. CrossRef
    90. Nagaraja AK, Andreu-Vieyra C, Franco HL, Ma L, Chen R, Han DY, Zhu H, Agno JE, Gunaratne PH, DeMayo FJ, / et al.: Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. / Mol Endocrinol 2008,22(10):2336鈥?352. CrossRef
    91. Ma L, Buchold GM, Greenbaum MP, Roy A, Burns KH, Zhu H, Han DY, Harris RA, Coarfa C, Gunaratne PH, / et al.: Correction: GASZ Is Essential for Male Meiosis and Suppression of Retrotransposon Expression in the Male Germline. / PLoS Genet 2009.,5(12):
    92. Schuster P, Fontana W, Stadler PF, Hofacker IL: From sequences to shapes and back: a case study in RNA secondary structures. / Proc Biol Sci 1994,255(1344):279鈥?84. CrossRef
    93. Kalafus KJ, Jackson AR, Milosavljevic A: Pash: efficient genome-scale sequence anchoring by Positional Hashing. / Genome Res 2004,14(4):672鈥?78. CrossRef
    94. Coarfa C, Milosavljevic A: Pash 2.0: scaleable sequence anchoring for next-generation sequencing technologies. / Pac Symp Biocomput 2008, 102鈥?13.
    95. Thomson T, Lin H: The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. / Annu Rev Cell Dev Biol 2009, 25:355鈥?76. CrossRef
    96. Royo H, Cavaille J: Non-coding RNAs in imprinted gene clusters. / Biol Cell 2008,100(3):149鈥?66. CrossRef
    97. Gu P, Reid JG, Gao X, Shaw CA, Creighton C, Tran PL, Zhou X, Drabek RB, Steffen DL, Hoang DM, / et al.: Novel microRNA candidates and miRNA-mRNA pairs in embryonic stem (ES) cells. / PLoS One 2008,3(7):e2548. CrossRef
    98. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. / Methods 2001,25(4):402鈥?08. CrossRef
  • 作者单位:Preethi H Gunaratne (1) (2) (3)
    Ya-Chi Lin (4)
    Ashley L Benham (1)
    Jenny Drnevich (5)
    Cristian Coarfa (11)
    Jayantha B Tennakoon (1)
    Chad J Creighton (6)
    Jong H Kim (1)
    Aleksandar Milosavljevic (11)
    Michael Watson (7)
    Sam Griffiths-Jones (8)
    David F Clayton (10) (4) (9)

    1. Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA
    2. Departments of Pathology, Baylor College of Medicine, Houston, Texas, 77030, USA
    3. Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
    4. Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL, 61801, USA
    5. W.M. Keck Center for Comparative and Functional Genomics, Roy J. Carver Biotechnology Center, University of Illinois, Urbana-Champaign, IL, 61801, USA
    11. Bioinformatics Research Laboratory (BRL), Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
    6. Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
    7. ARK-Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, EH25 9RG, UK
    8. Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
    10. Beckman Institute, University of Illinois, Urbana-Champaign, IL, 61801, USA
    9. Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL, 61801, USA
文摘
Background In an important model for neuroscience, songbirds learn to discriminate songs they hear during tape-recorded playbacks, as demonstrated by song-specific habituation of both behavioral and neurogenomic responses in the auditory forebrain. We hypothesized that microRNAs (miRNAs or miRs) may participate in the changing pattern of gene expression induced by song exposure. To test this, we used massively parallel Illumina sequencing to analyse small RNAs from auditory forebrain of adult zebra finches exposed to tape-recorded birdsong or silence. Results In the auditory forebrain, we identified 121 known miRNAs conserved in other vertebrates. We also identified 34 novel miRNAs that do not align to human or chicken genomes. Five conserved miRNAs showed significant and consistent changes in copy number after song exposure across three biological replications of the song-silence comparison, with two increasing (tgu-miR-25, tgu-miR-192) and three decreasing (tgu-miR-92, tgu-miR-124, tgu-miR-129-5p). We also detected a locus on the Z sex chromosome that produces three different novel miRNAs, with supporting evidence from Northern blot and TaqMan qPCR assays for differential expression in males and females and in response to song playbacks. One of these, tgu-miR-2954-3p, is predicted (by TargetScan) to regulate eight song-responsive mRNAs that all have functions in cellular proliferation and neuronal differentiation. Conclusions The experience of hearing another bird singing alters the profile of miRNAs in the auditory forebrain of zebra finches. The response involves both known conserved miRNAs and novel miRNAs described so far only in the zebra finch, including a novel sex-linked, song-responsive miRNA. These results indicate that miRNAs are likely to contribute to the unique behavioural biology of learned song communication in songbirds.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700