Attrition of dolomitic lime in a fluidized-bed reactor at high temperatures
详细信息    查看全文
  • 作者:Miloslav Hartman (1)
    Karel Svoboda (1)
    Michael Poho?ely (1) (2)
    Michal ?yc (1)
    Michal Jeremiá? (1) (2)
  • 关键词:dolomitic lime ; attrition ; fluidized bed ; catalytic gasification
  • 刊名:Chemical Papers
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:67
  • 期:2
  • 页码:164-172
  • 全文大小:215KB
  • 参考文献:1. Abu El-Rub, Z., Bramer, E. A., & Brem, G. (2004). Review of catalysts for tar elimination in biomass gasification processes. / Industrial & Engineering Chemistry Research, 43, 6911-919. DOI: 10.1021/ie0498403. CrossRef
    2. Ayazi Shamlou, P., Liu, Z., & Yates, J. G. (1990). Hydrodynamic influences on particle breakage in fluidized beds. / Chemical Engineering Science, 45, 809-17. DOI: 10.1016/0009-2509(90)85004-w. CrossRef
    3. Boynton, R. S. (1980). / Chemistry and technology of lime and limestone (2nd ed.). New York, NY, USA: Wiley.
    4. Chen, Z. X., Grace, J. R., & Lim, C. J. (2008). Limestone particle attrition and size distribution in a small circulating fluidized bed. / Fuel, 87, 1360-371. DOI:10.1016/j.fuel.2007.06.012. CrossRef
    5. Cook, J. L., Khang S. J., Lee, S. K., & Keener, T. C. (1996). Attrition and changes in particle size distribution of lime sorbents in a circulating fluidized bed absorber. / Powder Technology, 89, 1-. DOI: 10.1016/s0032-5910(96)03115-4. CrossRef
    6. Corella, J., Toledo, J. M., & Aznar, M. P. (2002). Improving the modeling of the kinetics of the catalytic tar elimination in biomass gasification. / Industrial & Engineering Chemistry Research, 41, 3351-356. DOI: 10.1021/ie0110336. CrossRef
    7. Di Benedetto, A., & Salatino, P. (1998). Modeling attrition of limestone during calcination and sulfation in a fluidized bed reactor. / Powder Technology 95, 119-28. DOI: 10.1016/s0032-5910(97)03327-5. CrossRef
    8. Gil, J., Caballero, M. A., Martin, J. A., Aznar, M. P., & Corella, J. (1999). Biomass gasification with air in a fluidized bed: Effect of the in-bed use of dolomite under different operation conditions. / Industrial & Engineering Chemistry Research, 38, 4226-235. DOI: 10.1021/ie980802r. CrossRef
    9. Hartman, M., & Svoboda, K. (1986). Predicting the effect of operating temperature on the minimum fluidization velocity. / Industrial & Engineering Chemistry Process Design and Development, 25, 649-54. DOI: 10.1021/i200034a009. CrossRef
    10. Hartman, M., Svoboda, K., & Trnka, O. (1991). Unsteady-state retention of sulfur dioxide in a fluidized bed with continual feeding of lime and limestone. / Industrial & Engineering Chemistry Research, 30, 1855-864. DOI: 10.1021/ie00056a 027. CrossRef
    11. Hartman, M., & Martinovsky, A. (1992). Thermal stability of the magnesian and calcareous compounds for desulfurization processes. / Chemical Engineering Communications, 111, 149-60. DOI: 10.1080/00986449208935985. CrossRef
    12. Hartman, M., & Coughlin, R. W. (1993). On the incipient fluidized state of solid particles. / Collection of Czechoslovak Chemical Communications, 58, 1213-241. DOI: 10.1135/cccc19931213. CrossRef
    13. Hartman, M., & Yates, J. G. (1993). Free-fall of solid particles through fluids. / Collection of Czechoslovak Chemical Communications, 58, 961-82. DOI: 10.1135/cccc19930961. CrossRef
    14. Hartman, M., Trnka, O., & Svoboda, K. (1994a). Free settling of nonspherical particles. / Industrial & Engineering Chemistry Research, 33, 1979-983. DOI: 10.1021/ie00032a012. CrossRef
    15. Hartman, M., Trnka, O., & Vesely, V. (1994b). Thermal dehydration of magnesium hydroxide and sintering of nascent magnesium oxide. / AIChE Journal, 40, 536-42. DOI: 10.1002/aic.690400314. CrossRef
    16. Hartman, M., Trnka, O., & Svoboda, K. (2000). Fluidization characteristics of dolomite and calcined dolomite particles. / Chemical Engineering Science, 55, 6269-274. DOI: 10.1016/S0009-2509(00)00409-7. CrossRef
    17. Hartman, M., Trnka, O., & Poho?ely, M. (2007). Minimum and terminal velocities in fluidization of particulate ceramsite at ambient and elevated temperature. / Industrial & Engineering Chemistry Research, 46, 7260-266. DOI: 10.1021/ie0615685. CrossRef
    18. Hartman, M., Trnka, O., & Svoboda, K. (2009). Use of presure fluctuations to determine online the regime of gas-solids suspensions from incipient fluidization to transport. / Industrial & Engineering Chemistry Research, 48, 6830-835. DOI: 10.1021/ie900055x. CrossRef
    19. Hartman, M., Trnka, O., Poho?ely, M., & Svoboda, K. (2010). High-temperature reaction in the freeboard region above a bubbling fluidized bed. / Industrial & Engineering Chemistry Research, 49, 2672-680. DOI: 10.1021/ie901760f. CrossRef
    20. Higman, C., & van der Burgt, M. (2008). / Gasification (2nd ed.). Amsterdam, The Netherlands: Elsevier.
    21. Knoef, H. A.M. (Ed.) (2005). / Handbook of biomass gasification. Enschede, The Netherlands: BTG biomass technology group.
    22. Lee, S. K., Jiang, X. L., Keener, T. C., & Khang, S. J. (1993). Attrition of lime sorbents during fluidization in a circulating fluidized bed absorber. / Industrial & Engineering Chemistry Research, 32, 2758-766. DOI: 10.1021/ie00023a044. CrossRef
    23. Montagnaro, F., Salatino, P., & Scala, F. (2010). The influence of temperature on limestone sulfation and attrition under fluidized bed combustion conditions. / Experimental Thermal and Fluid Science, 34, 352-58. DOI: 10.1016/j.expthermflusci.2009.10.013. CrossRef
    24. Oates, J. A. H. (1998). / Lime and limestone: Chemistry and technology, production and uses. Weinheim, Germany: Wiley-VCH.
    25. Poho?ely, M., Svoboda, K., & Hartman, M. (2004). Feeding small quantities of particulate solids. / Powder Technology, 142, 1-. DOI: 10.1016/j.powtec.2004.03.005. CrossRef
    26. Saastamoinen, J. J. (2007). Particle-size optimization for SO2 capture by limestone in a circulating fluidized bed. / Industrial & Engineering Chemistry Research, 46, 7308-316. DOI: 10.1021/ie070567p. CrossRef
    27. Scala, F., Cammarota, A., Chirone, R., & Salatino, P. (1997). Comminution of limestone during batch fluidized-bed calcination and sulfation. / AIChE Journal, 43, 363-73. DOI: 10.1002/aic.690430210. CrossRef
    28. Scala, F., & Salatino, P. (2003). Dolomite attrition during fluidized-bed calcination and sulfation. / Combustion Science and Technology, 175, 2201-216. DOI: 10.1080/714923284. CrossRef
    29. Scala, F., Montagnaro, F., & Salatino, P. (2007). Attrition of limestone by impact loading in fluidized beds. / Energy & Fuels, 21, 2566-572. DOI: 10.1021/ef0700580. CrossRef
    30. Scala, F., & Salatino, P. (2010). Limestone fragmentation and attrition during fluidized bed oxyfiring. / Fuel, 89, 827-32. DOI: 10.1016/j.fuel.2009.03.024. CrossRef
    31. Sutton, D., Kelleher, B., & Ross, J. R. H. (2001). Review of literature on catalysts for biomass gasification. / Fuel Processing Technology, 73, 155-73. DOI: 10.1016/s0378-3820(01)00208-9. CrossRef
    32. Yao, X., Zhang, H., Yang, H. R., Liu, Q., Wang, J. W., & Yue, G. X. (2010). An experimental study on the primary fragmentation and attrition of limestones in a fluidized bed. / Fuel Processing Technology, 91, 1119-124. DOI: 10.1016/j.fuproc.2010.03.025. CrossRef
    33. Zheng, J., Yates, J. G., & Rowe, P. N. (1982). A model for desulphurization with limestone in a fluidised coal combustor. / Chemical Engineering Science, 37, 167-74. DOI: 10.1016/0009-2509(82)80151-6. CrossRef
  • 作者单位:Miloslav Hartman (1)
    Karel Svoboda (1)
    Michael Poho?ely (1) (2)
    Michal ?yc (1)
    Michal Jeremiá? (1) (2)

    1. Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Rozvojová 135, 165 02, Prague 6-Suchdol, Czech Republic
    2. Department of Power Engineering, Institute of Chemical Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
  • ISSN:1336-9075
文摘
Results of an experimental study on the rate of attrition of lime catalyst/sorbent in a high-temperature, turbulent fluidized bed with quartz sand are presented. Batch measurements were conducted at 850°C in an electrically heated gasification reactor of the inner diameter of 5.1 cm with three samples of high-grade dolomitic lime of the particle size 450 μm, 715 μm, and 1060 μm, respectively. In addition to the influence of the particle size, the effect of operating (elapsed) time was investigated at different superficial gas velocities. Assuming that the attrition rate decreases exponentially with time, a simple mechanistic model, enabling the correlation of the measured experimental data, was developed. The course of the lime particles attrition is described as a function of the elapsed time, excess gas velocity, and particle size. The presented approach and the results might be applicable for the attrition of high-grade dolomitic lime, particularly in fluidized gasification of biomass.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700