Significance of Lgr5+ve Cancer Stem Cells in the Colon and Rectum
详细信息    查看全文
  • 作者:Hidekazu Takahashi MD (1)
    Hideshi Ishii MD
    ; PhD (1) (2)
    Naohiro Nishida MD (1) (2)
    Ichiro Takemasa MD
    ; PhD (1)
    Tsunekazu Mizushima MD
    ; PhD (1)
    Masataka Ikeda MD
    ; PhD (1) (2)
    Takehiko Yokobori MD
    ; PhD (2)
    Koshi Mimori MD
    ; PhD (2)
    Hirofumi Yamamoto MD
    ; PhD (1)
    Mitsugu Sekimoto MD
    ; PhD (1)
    Yuichiro Doki MD
    ; PhD ; FACS (1)
    Masaki Mori MD
    ; PhD ; FACS (1) (2)
  • 刊名:Annals of Surgical Oncology
  • 出版年:2011
  • 出版时间:April 2011
  • 年:2011
  • 卷:18
  • 期:4
  • 页码:1166-1174
  • 全文大小:593KB
  • 参考文献:1. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. / N Engl J Med. 2009;361:2449-0. CrossRef
    2. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. / Nature. 2001;414:105-1. 38/35102167">CrossRef
    3. Dick JE. Looking ahead in cancer stem cell research. / Nat Biotechnol. 2009;27:44-. 38/nbt0109-44">CrossRef
    4. Vermeulen L, Todaro M, de Sousa Mello F, et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. / Proc Natl Acad Sci USA. 2008;105:13427-2. 3/pnas.0805706105">CrossRef
    5. Dalerba P, Dylla SJ, Park IK, et al. Phenotypic characterization of human colorectal cancer stem cells. / Proc Natl Acad Sci USA. 2007;104:10158-3. 3/pnas.0703478104">CrossRef
    6. Haraguchi N, Ohkuma M, Sakashita H, et al. CD133+CD44+ population efficiently enriches colon cancer initiating cells. / Ann Surg Oncol. 2008;15:2927-3. 34-008-0074-0">CrossRef
    7. Yasuda H, Tanaka K, Saigusa S, et al. Elevated CD133, but not VEGF or EGFR, as a predictive marker of distant recurrence after preoperative chemoradiotherapy in rectal cancer. / Oncol Rep. 2009;22:709-7.
    8. Horst D, Scheel SK, Liebmann S, et al. The cancer stem cell marker CD133 has high prognostic impact but unknown functional relevance for the metastasis of human colon cancer. / J Pathol. 2009;219:427-4. CrossRef
    9. Saigusa S, Tanaka K, Toiyama Y, et al. Correlation of CD133, OCT4, and SOX2 in rectal cancer and their association with distant recurrence after chemoradiotherapy. / Ann Surg Oncol. 2009;16:3488-8. 34-009-0617-z">CrossRef
    10. Weichert W, Denkert C, Burkhardt M, et al. Cytoplasmic CD24 expression in colorectal cancer independently correlates with shortened patient survival. / Clin Cancer Res. 2005;11:6574-1. 32.CCR-05-0606">CrossRef
    11. Ahmed MA, Al-Attar A, Kim J, et al. CD24 shows early upregulation and nuclear expression but is not a prognostic marker in colorectal cancer. / J Clin Pathol. 2009;62:1117-2. 36/jcp.2009.069310">CrossRef
    12. Choi D, Lee HW, Hur KY, et al. Cancer stem cell markers CD133 and CD24 correlate with invasiveness and differentiation in colorectal adenocarcinoma. / World J Gastroenterol. 2009;15:2258-4. 3748/wjg.15.2258">CrossRef
    13. van de Wetering M, Sancho E, Verweij C, et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. / Cell. 2002;111:241-0. CrossRef
    14. Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. / Nature. 2007;449:1003-. 38/nature06196">CrossRef
    15. Jaks V, Barker N, Kasper M, et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. / Nat Genet. 2008;40:1291-. 38/ng.239">CrossRef
    16. Tuupanen S, Turunen M, Lehtonen R, et al. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. / Nat Genet. 2009;41:885-0. 38/ng.406">CrossRef
    17. Haegebarth A, Clevers H. Wnt signaling, lgr5, and stem cells in the intestine and skin. / Am / J Pathol. 2009;174:715-1. 353/ajpath.2009.080758">CrossRef
    18. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Migrating cancer stem cells—an integrated concept of malignant tumour progression. / Nat Rev Cancer. 2005;5:744-. 38/nrc1694">CrossRef
    19. Gao P, Tchernyshyov I, Chang TC, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. / Nature. 2009;458:762-. 38/nature07823">CrossRef
    20. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. / Cell. 2004;116:281-7. CrossRef
    21. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. / Genome Res. 2009;19:92-05. CrossRef
    22. He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. / Nature. 2005;435:828-3. 38/nature03552">CrossRef
    23. Mariadason JM, Bordonaro M, Aslam F, et al. Down-regulation of beta-catenin TCF signaling is linked to colonic epithelial cell differentiation. / Cancer Res. 2001;61:3465-1.
    24. Conacci-Sorrell M, Simcha I, Ben-Yedidia T, et al. Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. / J Cell Biol. 2003;163:847-7. 3/jcb.200308162">CrossRef
    25. Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. / Nat Cell Biol. 2009;11:1487-5. 38/ncb1998">CrossRef
    26. Furth J, Kahn MC. The transmission of leukemia of mice with a single cells. / Am J Cancer. 1937;31:276-2.
    27. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. / Nature. 1994;367:645-. 38/367645a0">CrossRef
    28. Bonnet D, Dick JE. Human acute leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. / Nat Med. 1997;3:730-7. 38/nm0797-730">CrossRef
    29. Wulf GG, Wang RY, Kuehnle I, et al. A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. / Blood. 2001;98:1166-73. CrossRef
    30. Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. / Proc Natl Acad Sci USA. 2007;104:973-.
    31. Haraguchi N, Utsunomiya T, Inoue H, et al. Characterization of a side population of cancer cells from human gastrointestinal system. / Stem Cells. 2006;24:506-3. 34/stemcells.2005-0282">CrossRef
    32. Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. / Nature. 2007;445:111-. 38/nature05384">CrossRef
    33. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. / Nature. 2007;445:106-0. 38/nature05372">CrossRef
    34. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. / Proc Natl Acad Sci USA. 2003;100:3983-8. 3/pnas.0530291100">CrossRef
    35. Piccirillo SG, Reynolds BA, Zanetti N, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. / Nature. 2006;444:761-. 38/nature05349">CrossRef
    36. Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. / Nature. 2006;444:756-0. 38/nature05236">CrossRef
    37. Tan BT, Park CY, Ailles LE, Weissman IL. The cancer stem cell hypothesis: a work in progress. / Lab Invest. 2006;86:1203-. 38/labinvest.3700488">CrossRef
    38. Hsu SY, Liang, SG, Hsueh AJ. Characterization of two LGR genes homologous to gonadotropin and thyrotropin receptors with extracellular leucine-rich repeats and a G protein-coupled, seven-transmembrane region. / Mol Endocrinol. 1998;12:1830-5. 30">CrossRef
    39. Reya T, Clevers H. Wnt signalling in stem cells and cancer. / Nature. 2005;434:843-0. 38/nature03319">CrossRef
    40. Finch AJ, Soucek L, Junttila MR, Swigart LB, Evan GI. Acute overexpression of Myc in intestinal epithelium recapitulates some but not all the changes elicited by Wnt/beta-catenin pathway activation. / Mol Cell Biol. 2009;29:5306-5. CrossRef
    41. Gordan JD, Thompson, CB, Simon MC. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. / Cancer Cell. 2007;12:108-3. CrossRef
  • 作者单位:Hidekazu Takahashi MD (1)
    Hideshi Ishii MD, PhD (1) (2)
    Naohiro Nishida MD (1) (2)
    Ichiro Takemasa MD, PhD (1)
    Tsunekazu Mizushima MD, PhD (1)
    Masataka Ikeda MD, PhD (1) (2)
    Takehiko Yokobori MD, PhD (2)
    Koshi Mimori MD, PhD (2)
    Hirofumi Yamamoto MD, PhD (1)
    Mitsugu Sekimoto MD, PhD (1)
    Yuichiro Doki MD, PhD, FACS (1)
    Masaki Mori MD, PhD, FACS (1) (2)

    1. Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
    2. Department of Molecular and Cellular Biology, Division of Molecular and Surgical Oncology, Kyushu University, Medical Institute of Bioregulation, Ohita, Japan
文摘
Purpose Although recent studies show that leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5)+ve cells targeted by Wnt drive self-renewal in the skin and gastrointestinal organs, the clinicopathological significance of Lgr5+ve cancer stem cells (CSCs) of the colon remains to be elucidated. Experimental Design We studied the Wnt-targeted Lgr5 pathway in colorectal cancer (CRC). The expression of LGR5, c-MYC, p21CIP1/WAF1/CDKN1A, glutaminase (GLS), and miRs-23a and -23b (that target LGR5 and GLS) was evaluated by quantitative real-time reverse-transcription polymerase chain reaction (RT-PCR). The Lgr5 protein was evaluated by immunohistochemistry. The clinical relevance of gene expression in terms of patient survival was also evaluated. Results Overexpression of LGR5 was significantly associated with expression of c-MYC, p21CIP1/WAF1/CDKN1A, and GLS (p?<?0.0001), and inversely associated with miR-23a/b (p?<?0.05). Immunohistochemical analysis indicated that Lgr5 may be embedded in benign adenomas, localized at the tumor–host interface, and detectable over a broad area in established tumors. High level of LGR5 expression was associated with poor prognosis for CRC cancer patients (disease-free survival; p?<?0.05). Conclusions This study supports a significant role for LGR5 in the CSC hypothesis in CRC: (1) Lgr5+ve CSCs, presumably derived from normal stem cells in colonic crypts, proliferate, and the gene is overexpressed during CRC development; (2) LGR5 expression is associated with activation of Wnt pathway, including oncogenic c-MYC and high energy production via glutaminolysis; (3) LGR5 expression may be a poor prognostic factor for CRC patients. Further study of LGR5 should contribute to the development of CSC-based cancer therapeutics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700