Dimethyl sulfoxide reduction by a hyperhermophilic archaeon Thermococcus onnurineus NA1 via a cysteine-cystine redox shuttle
详细信息    查看全文
  • 作者:Ae Ran Choi ; Min-Sik Kim ; Sung Gyun Kang ; Hyun Sook Lee
  • 关键词:DMSO ; Thermococcus onnurineus NA1 ; cysteinecystine redox shuttle ; thioredoxin reductase ; protein disulfide oxidoreductase ; extracellular electron mediator
  • 刊名:Journal of Microbiology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:54
  • 期:1
  • 页码:31-38
  • 全文大小:526 KB
  • 参考文献:Adams, M.W.W. 1990. The metabolism of hydrogen by extremely thermophilic, sulfur-dependent bacteria. FEMS Microbiol. Lett. 75, 219–237.CrossRef
    Ando, H., Kumagai, M., Karashimada, T., and Iida, H. 1957. Diagnostic use of dimethylsulfoxide reduction test within Enterobacteriaceae. Jpn J. Microbiol. 1, 35–338.CrossRef
    Arias, D.G., Carranza, P.G., Lujan, H.D., Iglesias, A.A., and Guerrero, S.A. 2008. Immunolocalization and enzymatic functional characterization of the thioredoxin system in Entamoeba histolytica. Free Radic. Biol. Med. 45, 32–39.PubMed CrossRef
    Bae, S.S., Kim, T.W., Lee, H.S., Kwon, K.K., Kim, Y.J., Kim, M.S., Lee, J.H., and Kang, S.G. 2012. H2 production from CO,formate or starch using the hyperthermophilic archaeon, Thermococcus onnurineus. Biotechnol. Lett. 34, 75–79.PubMed CrossRef
    Bae, S.S., Kim, Y.J., Yang, S.H., Lim, J.K., Jeon, J.H., Lee, H.S., Kang, S.G., Kim, S.J., and Lee, J.H. 2006. Thermococcus onnurineus sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area at the PACMANUS field. J. Microbiol. Biotechnol. 16, 1826–1831.
    Baptist, E.W. and Kredich, N.M. 1977. Regulation of L-cystine transport in Salmonella typhimurium. J. Bacteriol. 131, 111–118.PubMed PubMedCentral
    Berger, E.A. and Heppel, L.A. 1972. A binding protein involved in the transport of cystine and diaminopimelic acid in Escherichia coli. J. Biol. Chem. 247, 7684–7694.PubMed
    Berks, B.C. 1996. A common export pathway for proteins binding complex redox cofactors? Mol. Microbiol. 22, 393–404.PubMed CrossRef
    Bick, J.A., Aslund, F., Chen, Y., and Leustek, T. 1998. Glutaredoxin function for the carboxyl-terminal domain of the plant-type 5′-adenylylsulfate reductase. Proc. Natl. Acad. Sci. USA 95, 8404–8409.PubMed PubMedCentral CrossRef
    Bilous, P.T. and Weiner, J.H. 1985. Proton translocation coupled to dimethyl sulfoxide reduction in anaerobically grown Escherichia coli HB101. J. Bacteriol. 163, 369–375.PubMed PubMedCentral
    Boschi-Muller, S., Olry, A., Antoine, M., and Branlant, G. 2005. The enzymology and biochemistry of methionine sulfoxide reductases. Biochim. Biophys. Acta. 1703, 231–238.PubMed CrossRef
    Brimblecombe, P. and Shooter, D. 1986. Photo-oxidation of dimethylsulphide in aqueous solution. Mar. Chem. 19, 343–353.CrossRef
    Brot, N., Weissbach, L., Werth, J., and Weissbach, H. 1981. Enzymatic reduction of protein-bound methionine sulfoxide. Proc. Natl. Acad. Sci. USA 78. 2155–2158.PubMed PubMedCentral CrossRef
    Burguière, P., Auger, S., Hullo, M.F., Danchin, A., and Martin-Verstraete, I. 2004. Three different systems participate in L-cystine uptake in Bacillus subtilis. J. Bacteriol. 186, 4875–4884.PubMed PubMedCentral CrossRef
    Charlson, R.J., Lovelock, J.E., Andreae, M.O., and Warren, S.G. 1987. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655–661.CrossRef
    Coombs, G.H., Westrop, G.D., Suchan, P., Puzova, G., Hirt, R.P., Embley, T.M., Mottram, J.C., and Müller, S. 2004. The amitochondriate eukaryote Trichomonas vaginalis contains a divergent thioredoxin-linked peroxiredoxin antioxidant system. J. Biol. Chem. 279, 5249–5256.PubMed CrossRef
    Dassa, E., Hofnung, M., Paulsen, I.T., and Saier, M.H. 1999. The Escherichia coli ABC transporters: an update. Mol. Microbiol. 32. 887–889.PubMed CrossRef
    De Wever, H., Cole, J.R., Fettig, M.R., Hogan, D.A., and Tiedje, J.M. 2000. Reductive dehalogenation of trichloroacetic acid by Trichlorobacter thiogenes gen. nov., sp. nov. Appl. Environ. Microbiol. 66, 2297–2301.PubMed PubMedCentral CrossRef
    Dietrich, W. and Klimmek, O. 2002. The function of methyl-menaquinone-6 and polysulfide reductase membrane anchor (PsrC) in polysulfide respiration of Wolinella succinogenes. Eur. J. Biochem. 269, 1086–1095.PubMed CrossRef
    Doong, R.A. and Schink, B. 2002. Cysteine-mediated reductive dissolution of poorly crystalline iron(III) oxides by Geobacter sulfurreducens. Environ. Sci. Technol. 36, 2939–2945.PubMed CrossRef
    Ezraty, B., Aussel, L., and Barras, F. 2005. Methionine sulfoxide reductases in prokaryotes. Biochim. Biophys. Acta. 1703, 221–229.PubMed CrossRef
    Fukui, T., Atomi, H., Kanai, T., Matsumi, R., Fujiwara, S., and Imanaka, T. 2005. Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res. 15, 352–363.PubMed PubMedCentral CrossRef
    Fukushima, E., Shinka, Y., Fukui, T., Atomi, H., and Imanaka, T. 2007. Methionine sulfoxide reductase from the hyperthermophilic archaeon Thermococcus kodakaraensis, an enzyme designed to function at suboptimal growth temperatures. J. Bacteriol. 189, 7134–7144.PubMed PubMedCentral CrossRef
    Gardner, A.F., Kumar, S., and Perler, F.B. 2012. Genome sequence of the model hyperthermophilic archaeon Thermococcus litoralis NS-C. J. Bacteriol. 194, 2375–2376.PubMed PubMedCentral CrossRef
    Gralnick, J.A., Vali, H., Lies, D.P., and Newman, D.K. 2006. Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1. Proc. Natl. Acad. Sci. USA 103, 4669–4674.PubMed PubMedCentral CrossRef
    Grimaud, R., Ezraty, B., Mitchell, J.K., Lafitte, D., Briand, C., Derrick, P.J., and Barras, F. 2001. Repair of oxidized proteins. Identification of a new methionine sulfoxide reductase. J. Biol. Chem. 276, 48915–48920.PubMed CrossRef
    Guagliardi, A., de Pascale, D., Cannio, R., Nobile, V., Bartolucci, S., and Rossi, M. 1995. The purification, cloning, and high level expression of a glutaredoxin-like protein from the hyperthermophilic archaeon Pyrococcus furiosus. J. Biol. Chem. 270, 5748–5755.PubMed CrossRef
    Guiral, M., Tron, P., Aubert, C., Gloter, A., Iobbi-Nivol, C., and Giudici-Orticoni, M.T. 2005. A membrane-bound multienzyme, hydrogen-oxidizing, and sulfur-reducing complex from the hyperthermophilic bacterium Aquifex aeolicus. J. Biol. Chem. 280, 42004–42015.PubMed CrossRef
    Hedderich, R., Klimmek, O., Kröger, A., Dirmeier, R., Keller, M., and Stetter, K.O. 1998. Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol. Rev. 22, 353–381.CrossRef
    Hosie, A.H.F. and Poole, P.S. 2001. Bacterial ABC transporters of amino acids. Res. Microbiol. 152, 259–270.PubMed CrossRef
    Jeong, J.Y., Yim, H.S., Ryu, J.Y., Lee, H.S., Lee, J.H., Seen, D.S., and Kang, S.G. 2012. One-step sequence-and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies. Appl. Environ. Microbiol. 78, 5440–5443.PubMed PubMedCentral CrossRef
    Jonkers, H.M., der Maarel, M.J.E.C., Gemerden, H., and Hansen, T.A. 1996. Dimethylsulfoxide reduction by marine sulfate-reducing bacteria. FEMS Microbiol. Lett. 136, 283–287.CrossRef
    Karsten, U., Wiencke, C., and Kirst, G.O. 1990. The ß-dimethyl-sulphoniopropionate (DMSP) content of macroalgae from Antarctica and Southern Chile. Bot. Mar. 33, 143–146.CrossRef
    Kashima, Y. and Ishikawa, K. 2003. A hyperthermostable novel protein-disulfide oxidoreductase is reduced by thioredoxin reductase from hyperthermophilic archaeon Pyrococcus horikoshii. Arch. Biochem. Biophys. 418, 179–185.PubMed CrossRef
    Kim, Y.J., Lee, H.S., Kim, E.S., Bae, S.S., Lim, J.K., Matsumi, R., Lebedinsky, A.V., Sokolova, T.G., Kozhevnikova, D.A., Cha, S.S., et al. 2010. Formate-driven growth coupled with H2 production. Nature 467, 352–355.PubMed CrossRef
    Kim, S.K., Rahman, A., Conover, R.C., Johnson, M.K., Mason, J.T., Gomes, V., Hirasawa, M., Moore, M.L., Leustek, T., and Knaff, D.B. 2006. Properties of the cysteine residues and the iron-sulfur cluster of the assimilatory 5′-adenylyl sulfate reductase from Enteromorpha intestinalis. Biochemistry 45, 5010–5018.PubMed CrossRef
    Lee, H.S., Bae, S.S., Kim, M.S., Kwon, K.K., Kang, S.G., and Lee, J.H. 2011. Complete genome sequence of hyperthermophilic Pyrococcus sp. strain NA2, isolated from a deep-sea hydrothermal vent area. J. Bacteriol. 193, 3666–3667.PubMed PubMedCentral CrossRef
    Lee, H.S., Kang, S.G., Bae, S.S., Lim, J.K., Cho, Y., Kim, Y.J., Jeon, J.H., Cha, S.S., Kwon, K.K., Kim, H.T., et al. 2008. The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism. J. Bacteriol. 190, 7491–7499.PubMed PubMedCentral CrossRef
    Liu, D., Dong, H., Zhao, L., and Wang, H. 2014. Smectite reduction by Shewanella species as facilitated by cystine and cysteine. Geomicrobiol. J. 31, 53–63.CrossRef
    Lohmayer, R., Kappler, A., Losekann-Behrens, T., and Planer-Friedrich, B. 2014. Sulfur species as redox partners and electron shuttles for ferrihydrite reduction by Sulfurospirillum deleyianum. Appl. Environ. Microbiol. 80, 3141–3149.PubMed PubMedCentral CrossRef
    Lorenzen, J., Steinwachs, S., and Unden, G. 1994. DMSO respiration by the anaerobic rumen bacterium Wolinella succinogenes. Arch. Microbiol. 162, 277–281.PubMed CrossRef
    Lovelock, J.E., Maggs, R.J., and Rasmussen, R.A. 1972. Atmospheric dimethyl sulphide and the natural sulphur cycle. Nature 237, 452–453.CrossRef
    Lovley, D.R., Fraga, J.L., Blunt-Harris, E.L., Hayes, L.A., Phillips, E.J.P., and Coates, J.D. 1998. Humic substances as a mediator for microbially catalyzed metal reduction. Acta. Hydrochim. Hydrobiol. 26, 152–157.CrossRef
    Mandal, P.K., Seiler, A., Perisic, T., Kölle, P., Banjac Canak, A., Förster, H., Weiss, N., Kremmer, E., Lieberman, M.W., Bannai, S., et al. 2010. Systemxc -and thioredoxin reductase 1 cooperatively rescue glutathione deficiency. J. Biol. Chem. 285, 22244–22253.PubMed PubMedCentral CrossRef
    McEwan, A.G., Ferguson, S.J., and Jackson, J.B. 1983. Electron flow to dimethylsulphoxide or trimethylamine-N-oxide generates a membrane potential in Rhodopseudomonas capsulata. Arch. Microbiol. 136, 300–305.PubMed CrossRef
    McEwan, A.G., Ferguson, S.J., and Jackson, J.B. 1991. Purification and properties of dimethyl sulphoxide reductase from Rhodobacter capsulatus. A periplasmic molybdoenzyme. Biochem. J. 274, 305–307.PubMed
    McEwan, A.G., Wetzstein, H.G., Ferguson, S.J., and Jackson, J.B. 1985. Periplasmic location of the terminal reductase in trimethylamine N-oxide and dimethylsulphoxide respiration in the photosynthetic bacterium Rhodopseudomonas capsulata. Biochim. Biophys. Acta Bioenerg. 806. 410–417.CrossRef
    Müller, J.A. and DasSarma, S. 2005. Genomic analysis of anaerobic respiration in the archaeon Halobacterium sp. strain NRC-1: dimethyl sulfoxide and trimethylamine N-oxide as terminal electron acceptors. J. Bacteriol. 187, 1659–1667.PubMed PubMedCentral CrossRef
    Mytelka, D.S. and Chamberlin, M.J. 1996. Escherichia coli fliAZY operon. J. Bacteriol. 178, 24–34.PubMed PubMedCentral
    Oren, A. and Trüper, H.G. 1990. Anaerobic growth of halophilic archaeobacteria by reduction of dimethysulfoxide and trimethylamine N-oxide. FEMS Microbiol. Lett. 70, 33–36.CrossRef
    Pader, I., Sengupta, R., Cebula, M., Xu, J., Lundberg, J.O., Holmgren, A., Johansson, K., and Arnér, E.S.J. 2014. Thioredoxin-related protein of 14 kDa is an efficient L-cystine reductase and S-denitrosylase. Proc. Natl. Acad. Sci. USA 111, 6964–6969.PubMed PubMedCentral CrossRef
    Papanyan, Z. and Markarian, S. 2013. Detection of oxidation of L-cysteine by dimethyl sulfoxide in aqueous solutions by IRspectroscopy. J. Appl. Spectrosc. 80, 775–778.CrossRef
    Pedone, E., Limauro, D., D’Alterio, R., Rossi, M., and Bartolucci, S. 2006. Characterization of a multifunctional protein disulfide oxidoreductase from Sulfolobus solfataricus. FEBS J. 273, 5407–5420.PubMed CrossRef
    Rabaey, K., Boon, N., Höfte, M., and Verstraete, W. 2005. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39, 3401–3408.PubMed CrossRef
    Reed, R.H. 1983. Measurements and osmotic significance of ß-dimethylsulphoniopropionate in marine macroalgae. Mar. Biol. Lett. 4, 173–181.
    Riddles, P.W., Blakeley, R.L., and Zerner, B. 1979. Ellman’s reagent: 5,5′-dithiobis(2-nitrobenzoic acid)–a reexamination. Anal. Biochem. 94, 75–81.PubMed CrossRef
    Rocha, E.R., Tzianabos, A.O., and Smith, C.J. 2007. Thioredoxin reductase is essential for thiol/disulfide redox control and oxidative stress survival of the anaerobe Bacteroides fragilis. J. Bacteriol. 189, 8015–8023.PubMed PubMedCentral CrossRef
    Rossmann, R., Sawers, G., and Böck, A. 1991. Mechanism of regulation of the formate-hydrogenlyase pathway by oxygen, nitrate, and pH: definition of the formate regulon. Mol. Microbiol. 5, 2807–2814.PubMed CrossRef
    Saffarini, D.A., Blumerman, S.L., and Mansoorabadi, K.J. 2002. Role of menaquinones in Fe(III) reduction by membrane fractions of Shewanella putrefaciens. J. Bacteriol. 184, 846–848.PubMed PubMedCentral CrossRef
    Satoh, T. and Kurihara, F.N. 1987. Purification and properties of dimethylsulfoxide reductase containing a molybdenum cofactor from a photodenitrifier, Rhodopseudomonas sphaeroides f.s. denitrificans. J. Biochem. 102, 191–197.PubMed
    Scharf, C., Riethdorf, S., Ernst, H., Engelmann, S., Völker, U., and Hecker, M. 1998. Thioredoxin is an essential protein induced by multiple stresses in Bacillus subtilis. J. Bacteriol. 180, 1869–1877.PubMed PubMedCentral
    Schicho, R.N., Ma, K., Adams, M.W., and Kelly, R.M. 1993. Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 175, 1823–1830.PubMed PubMedCentral
    Schut, G.J., Bridger, S.L., and Adams, M.W.W. 2007. Insights into the metabolism of elemental sulfur by the hyperthermophilic archaeon Pyrococcus furiosus: characterization of a coenzyme A-dependent NAD(P)H sulfur oxidoreductase. J. Bacteriol. 189, 4431–4441.PubMed PubMedCentral CrossRef
    Schwalb, C., Chapman, S.K., and Reid, G.A. 2003. The tetraheme cytochrome CymA is required for anaerobic respiration with dimethyl sulfoxide and nitrite in Shewanella oneidensis. Biochemistry 42, 9491–9497.PubMed CrossRef
    Shaw, A.L., Hochkoeppler, A., Bonora, P., Zannoni, D., Hanson, G.R., and McEwan, A.G. 1999. Characterization of DorC from Rhodobacter capsulatus, a c-type cytochrome involved in electron transfer to dimethyl sulfoxide reductase. J. Biol. Chem. 274, 9911–9914.PubMed CrossRef
    Sokolova, T.G., Jeanthon, C., Kostrikina, N.A., Chernyh, N.A., Lebedinsky, A.V., Stackebrandt, E., and Bonch-Osmolovskaya, E.A. 2004. The first evidence of anaerobic COoxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Extremophiles 8, 317–323.PubMed CrossRef
    Straub, K.L. and Schink, B. 2004. Ferrihydrite-dependent growth of Sulfurospirillum deleyianum through electron transfer via sulfur cycling. Appl. Environ. Microbiol. 70, 5744–5749.PubMed PubMedCentral CrossRef
    Turick, C.E., Tisa, L.S., and Caccavo, F. 2002. Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY. Appl. Environ. Microbiol. 68, 2436–2444.PubMed PubMedCentral CrossRef
    Turner, M.S., Woodberry, T., Hafner, L.M., and Giffard, P.M. 1999. The bspA locus of Lactobacillus fermentum BR11 encodes an L-cystine uptake system. J. Bacteriol. 181, 2192–2198.PubMed PubMedCentral
    Uziel, O., Borovok, I., Schreiber, R., Cohen, G., and Aharonowitz, Y. 2004. Transcriptional regulation of the Staphylococcus aureus thioredoxin and thioredoxin reductase genes in response to oxygen and disulfide stress. J. Bacteriol. 186, 326–334.PubMed PubMedCentral CrossRef
    Vogt, C., Rabenstein, A., Rethmeier, J., and Fischer, U. 1997. Dimethyl sulphoxide reduction with reduced sulphur compounds as electron donors by anoxygenic phototrophic bacteria. Microbiology 143. 767–773.CrossRef
    Von Canstein, H., Ogawa, J., Shimizu, S., and Lloyd, J.R. 2008. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol. 74, 615–623.CrossRef
    Weiner, J.H., MacIsaac, D.P., Bishop, R.E., and Bilous, P.T. 1988. Purification and properties of Escherichia coli dimethyl sulfoxide reductase, an iron-sulfur molybdoenzyme with broad substrate specificity. J. Bacteriol. 170, 1505–1510.PubMed PubMedCentral
    Wissenbach, U., Kröger, A., and Unden, G. 1990. The specific functions of menaquinone and demethylmenaquinone in anaerobic respiration with fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate by Escherichia coli. Arch. Microbiol. 154, 60–66.PubMed CrossRef
    Zeyer, J., Eicher, P., Wakeham, S.G., and Schwarzenbach, R.P. 1987. Oxidation of dimethyl sulfide to dimethyl sulfoxide by phototrophic purple bacteria. Appl. Environ. Microbiol. 53, 2026–2032.PubMed PubMedCentral
    Zinder, S.H. and Brock, T.D. 1978a. Dimethyl sulfoxide as an electron acceptor for anaerobic growth. Arch. Microbiol. 116, 35–40.PubMed CrossRef
    Zinder, S.H. and Brock, T.D. 1978b. Dimethyl sulphoxide reduction by micro-organisms. J. Gen. Microbiol. 105, 335–342.PubMed CrossRef
  • 作者单位:Ae Ran Choi (1)
    Min-Sik Kim (1)
    Sung Gyun Kang (1) (2)
    Hyun Sook Lee (1) (2)

    1. Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea
    2. Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
  • 刊物主题:Microbiology;
  • 出版者:Springer Netherlands
  • ISSN:1976-3794
文摘
A variety of microbes grow by respiration with dimethyl sulfoxide (DMSO) as an electron acceptor, and several distinct DMSO respiratory systems, consisting of electron carriers and a terminal DMSO reductase, have been characterized. The heterotrophic growth of a hyperthermophilic archaeon Thermococcus onnurineus NA1 was enhanced by the addition of DMSO, but the archaeon was not capable of reducing DMSO to DMS directly using a DMSO reductase. Instead, the archaeon reduced DMSO via a cysteine-cystine redox shuttle through a mechanism whereby cystine is microbially reduced to cysteine, which is then reoxidized by DMSO reduction. A thioredoxin reductase-protein disulfide oxidoreductase redox couple was identified to have intracellular cystine-reducing activity, permitting recycle of cysteine. This study presents the first example of DMSO reduction via an electron shuttle. Several Thermococcales species also exhibited enhanced growth coupled with DMSO reduction, probably by disposing of excess reducing power rather than conserving energy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700