Stoichiometric implications of a biphasic life cycle
详细信息    查看全文
  • 作者:Scott D. Tiegs ; Keith A. Berven ; Douglas J. Carmack ; Krista A. Capps
  • 关键词:Nutrient excretion ; Nutrient mineralization ; Ecological stoichiometry ; Ontogeny ; Rana sylvatica ; Nitrogen ; Phosphorus ; Amphibian ; Development
  • 刊名:Oecologia
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:180
  • 期:3
  • 页码:853-863
  • 全文大小:657 KB
  • 参考文献:Allen AP, Gillooly GF (2009) Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling. Ecol Lett 12:369–384
    American Public Health Association, American Water Works Association, Water Environment Federation (2015) Standard methods for the examination of water and wastewater. http://​standardmethods.​org
    Ashley H, Katti P, Frieden E (1968) Urea excretion in the bullfrog tadpole. Effect of temperature, metamorphosis and thyroid hormones. Dev Biol 17:293–307CrossRef PubMed
    Back JA, King RS (2013) Sex and size matter: ontogenetic patterns of nutrient content of aquatic insects. Freshw Sci 32:837–848CrossRef
    Back JA, Taylor JM, King RS, Fallert KL, Hintzen EH (2008) Ontogenic differences in mayfly stoichiometry influence growth rates in response to phosphorus enrichment. Fundam Appl Limnol 171:233–240CrossRef
    Bartels P, Cucherousset J, Steger K, Eklov P, Tranvik LJ, Hillebrand H (2012) Reciprocal subsidies between freshwater and terrestrial ecosystems structure consumer resource dynamics. Ecology 93:1173–1182CrossRef PubMed
    Baxter CV, Fausch KD, Saunders WC (2005) Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshw Biol 50:201–220CrossRef
    Berman T, Chava S (1999) Algal growth on organic compounds as nitrogen sources. J Plankton Res 21:1423–1437CrossRef
    Berven KA (1990) Factors affecting population fluctuations in larval and adult stages of the wood frog (Rana sylvatica). Ecology 71:1599–1608CrossRef
    Berven KA (2009) Density dependence in the terrestrial stage of wood frogs: evidence from a 21-year population study. Copeia 328–338
    Berven KA, Boltz RS (2001) Interactive effects of leech (Desserobdella picta) infection on wood frog (Rana sylvatica) tadpole fitness traits. Copeia 907–915
    Capps KA, Flecker AS (2013) Invasive fishes generate biogeochemical hotspots in a nutrient-limited system. PLoS ONE 8:e54093CrossRef PubMed PubMedCentral
    Capps KA, Berven KA, Tiegs SD (2015) Modeling nutrient transport and transformation by pool
    eeding amphibians in forested landscapes using a 21 year dataset. Freshw Biol 3:500–511CrossRef
    Colon-Gaud C, Whiles MR, Kilham SS, Lips KR, Pringle CM, Connelly S, Peterson SD (2009) Assessing ecological responses to catastrophic amphibian declines: patterns of macroinvertebrate production and food web structure in upland Panamanian streams. Limnol Oceanogr 54:331–343CrossRef
    Costello DM, Michael MJ (2013) Predator-induced defenses in tadpoles confound body stoichiometry predictions of the general stress paradigm. Ecology 94(10):2229–2236CrossRef PubMed
    Cross WF, Benstead JP, Frost PC, Thomas SA (2005) Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives. Freshw Biol 50:1895–1912CrossRef
    De Brabandere L, Catalano MJ, Frazer TK, Allen MS (2009) Stable isotope evidence of ontogenetic changes in the diet of gizzard shad Dorosoma cepedianum. J Fish Biol 74:105–119CrossRef PubMed
    El-Sabaawi RW, Kohler TJ, Zandona E, Travis J, Marshall MC, Thomas SA, Reznick DN, Walsh M, Gilliam JF, Pringle C, Flecker AS (2012) Environmental and organismal predictors of intraspecific variation in the stoichiometry of a Neotropical freshwater fish. Plos One 7:e32713
    Elser JJ, Urabe J (1999) The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology 80:735–751CrossRef
    Elser JJ, Kacharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003) Growth rate–stoichiometry couplings in diverse biota. Ecol Lett 6:936–943
    Faerovig PJ, Hessen DO (2003) Allocation strategies in crustacean stoichiometry: the potential role of phosphorus in the limitation of reproduction. Freshw Biol 48:1782–1792CrossRef
    Frauendorf TC, Colon-Gaud C, Whiles MR, Barnum TR, Lips KR, Pringle CM, Kilham SS (2013) Energy flow and the trophic basis of macroinvertebrate and amphibian production in a neotropical stream food web. Freshw Biol 58:1340–1352CrossRef
    Frost PC, Xenopoulos MA, Larson JH (2004) The stoichiometry of dissolved organic carbon, nitrogen, and phosphorus release by a planktonic grazer, Daphnia. Limnol Oceanogr 49:1802–1808CrossRef
    Gonzalez AL, Farina JM, Kay AD, Pinto R, Marquet PA (2011) Exploring patterns and mechanisms of interspecific and intraspecific variation in body elemental composition of desert consumers. Oikos 120:1247–1255CrossRef
    Hamback PA, Gilbert J, Schneider K, Martinson HM, Kolb G, Fagan WF (2009) Effects of body size, trophic mode and larval habitat on Diptera stoichiometry: a regional comparison. Oikos 118:615–623CrossRef
    Hood JM, Vanni MJ, Flecker AS (2005) Nutrient recycling by two phosphorus-rich grazing catfish: the potential for phosphorus-limitation of fish growth. Oecologia 146:247–257CrossRef PubMed
    Janetski DJ, Chaloner DT, Tiegs SD, Lamberti GA (2009) Pacific salmon effects on stream ecosystems: a quantitative synthesis. Oecologia 159:583–595
    Janssens PA (1972) The influence of ammonia on the transition to ureotelism in Xenopus laevis. J Exp Zool 182:357–366CrossRef
    Keitzer SC, Goforth RR (2013) Spatial and seasonal variation in the ecological significance of nutrient recycling by larval salamanders in Appalachian headwater streams. Freshw Sci 32:1136–1147CrossRef
    Kemp NE, Hoyt JA (1969) Sequence of ossification in the skeleton of growing and metamorphosing tadpoles of Rana pipiens. J Morphol 129:415–443CrossRef PubMed
    Kendrick MR, Benstead JP (2013) Temperature and nutrient availability interact to mediate growth and body stoichiometry in a detritivorous stream insect. Freshw Biol 58:1820–1830CrossRef
    Knoll LB, McIntyre PB, Vanni MJ, Flecker AS (2009) Feedbacks of consumer nutrient recycling on producer biomass and stoichiometry: separating direct and indirect effects. Oikos 118:1732–1742CrossRef
    Main TM, Dobberfuhl DR, Elser JJ (1997) N:P stoichiometry and ontogeny of crustacean zooplankton: a test of the growth rate hypothesis. Limnol Oceanogr 42:1474–1478CrossRef
    Markow TA, Coppola A, Watts TD (2001) How Drosophila males make eggs: it is elemental. Proc R Soc B Biol Sci 268:1527–1532CrossRef
    McManamay RA, Webster JR, Valett HM, Dolloff CA (2011) Does diet influence consumer nutrient cycling? Macroinvertebrate and fish excretion in streams. J N Am Benthol Soc 30:84–102CrossRef
    Nakano S, Murakami M (2001) Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proc Natl Acad Sci USA 98:166–170CrossRef PubMed PubMedCentral
    Pilati A, Vanni MJ (2007) Ontogeny, diet shifts, and nutrient stoichiometry in fish. Oikos 116:1663–1674CrossRef
    Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316CrossRef
    Regester KJ, Whiles MR (2006) Decomposition rates of Salamander (Ambystoma maculatum) life stages and associated energy and nutrient fluxes in ponds and adjacent forest in Southern Illinois. Copeia 640–649
    Regester KJ, Whiles MR, Lips KR (2008) Variation in the trophic basis of production and energy flow associated with emergence of larval salamander assemblages from forest ponds. Freshw Biol 53:1754–1767CrossRef
    Rugenski AT, Murria C, Whiles MR (2012) Tadpoles enhance microbial activity and leaf decomposition in a neotropical headwater stream. Freshw Biol 57:1904–1913CrossRef
    Rugh R (1962) Experimental embryology. Burgess, Minneapolis
    Stephens JP, Berven KA, Tiegs SD (2013) Anthropogenic changes to leaf litter input affect the fitness of a larval amphibian. Freshw Biol 58:1631–1646CrossRef
    Stephens JP, Berven KA, Tiegs SD, Raffel TR (2015) Ecological stoichiometry quantatively predicts responses of tadpoles to a food quality gradient. Ecology 96:2070–2076CrossRef PubMed
    Sterner RW (1993) Daphnia growth on varying quality of Scenedesmus: mineral limitation of zooplankton. Ecology 74:2351–2360CrossRef
    Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton
    Stoler AB, Stephens JP, Relyea RA, Berven KA, Tiegs SD (2015) Leaf litter resource quality induces morphological changes in wood frog (Lithobates sylvaticus) metamorphs. Oecologia 179:667–677
    Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786CrossRef PubMed
    Taylor AC, Kollros JJ (1946) Stages in the normal development of Rana pipiens larvae. Anat Rec 94:7–23CrossRef PubMed
    Tiegs SD, Levi PS, Ruegg J, Chaloner DT, Tank JL, Lamberti GA (2011) Ecological effects of live salmon exceed those of carcasses during an annual spawning migration. Ecosystems 14:598–614CrossRef
    Vanni MJ, Flecker AS, Hood JM, Headworth JL (2002) Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking species identity and ecosystem processes. Ecol Lett 5:285–293CrossRef
    Vanni MJ, Boros G, McIntyre PB (2013) When are fish sources versus sinks of nutrients in lake ecosystems? Ecology 94:2195–2206CrossRef PubMed
    Wang H, Sterner RW, Elser JJ (2012) On the “strict homeostasis” assumption in ecological stoichiometry. Ecol Model 243:81–88CrossRef
    Whiles MR, Huryn AD, Taylor BW, Reeve JD (2009) Influence of handling stress and fasting on estimates of ammonium excretion by tadpoles and fish: recommendations for designing excretion experiments. Limnol Oceanogr 7:1–7CrossRef
    Whiles MR, Hall RO, Dodds WK, Verburg P, Huryn AD, Pringle CM, Lips KR, Kilham SS, Colon-Gaud C, Rugenski AT, Peterson S, Connelly S (2013) Disease-driven amphibian declines alter ecosystem processes in a tropical stream. Ecosystems 16:146–157CrossRef
    Withers PC (1998) Urea: diverse functions of a ‘waste’ product. Clin Exp Pharmacol Physiol 25:722–727CrossRef PubMed
    Woodward G, Gessner MO, Giller PS, Gulis V, Hladys S, Lecerf A, Malmqvist B, McKie BG, Tiegs SD, Cariss H, Dobson M, Elosegi A, Ferreira V, Graca MAS, Fleituch T, Lacoursiere JO, Nistorescu M, Pozo J, Risnoveanu G, Schindler M, Vadineanu A, Vought LB-M, Chauvet E (2012) Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 336:1438–1440
    Wright PM, Wright PA (1996) Nitrogen metabolism and excretion in Bullfrog Rana catesbelana tadpoles and adults exposed to elevated environmental ammonia levels. Physiol Zool 69:1057–1078CrossRef
  • 作者单位:Scott D. Tiegs (1)
    Keith A. Berven (1)
    Douglas J. Carmack (1)
    Krista A. Capps (2) (3)

    1. Department of Biological Sciences, Oakland University, Rochester, MI, 48309-4401, USA
    2. Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
    3. Savannah River Ecology Laboratory, Aiken, SC, 29802, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Ecology
    Plant Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1939
文摘
Animals mediate flows of elements and energy in ecosystems through processes such as nutrient sequestration in body tissues, and mineralization through excretion. For taxa with biphasic life cycles, the dramatic shifts in anatomy and physiology that occur during ontogeny are expected to be accompanied by changes in body and excreta stoichiometry, but remain little-explored, especially in vertebrates. Here we tested stoichiometric hypotheses related to the bodies and excreta of the wood frog (Lithobates sylvaticus) across life stages and during larval development. Per-capita rates of nitrogen (N) and phosphorus (P) excretion varied widely during larval ontogeny, followed unimodal patterns, and peaked midway through development (Taylor–Kollros stages XV and XII, respectively). Larval mass did not increase steadily during development but peaked at stage XVII and declined until the termination of the experiment at stage XXII. Mass-specific N and P excretion rates of the larvae decreased exponentially during development. When coupled with population-biomass estimates, population-level excretion rates were greatest at stages VIII–X. Percent carbon (C), N, and C:N of body tissue showed weak trends across major life stages; body P and C:P, however, increased sixfold during development from egg to adult. Our results demonstrate that intraspecific ontogenic changes in nutrient contents of excretion and body tissues can be significant, and that N and P are not always excreted proportionally throughout life cycles. These results highlight the dynamic roles that species play in ecosystems, and how the morphological and physiological changes that accompany ontogeny can influence ecosystem-level processes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700