Waste rock dump investigation at Ro?ia Montan? gold mine (Romania): a geostatistical approach
详细信息    查看全文
  • 作者:Diego Servida (1)
    Sara Comero (1) (2)
    Mara Dal Santo (1) (3)
    Luisa de Capitani (1)
    Giovanni Grieco (1)
    Pietro Marescotti (4)
    Silvia Porro (1)
    Ferenc Lázár Forray (5)
    ágnes Gál (5)
    Alexandru Szakács (6)
  • 关键词:Waste rock ; Mine dump ; Acid mine drainage (AMD) ; Positive matrix factorization (PMF) ; Ro?ia Montana
  • 刊名:Environmental Earth Sciences
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:70
  • 期:1
  • 页码:13-31
  • 全文大小:863KB
  • 参考文献:1. Alderton DHM, Fallick AE (2000) The nature and genesis of gold-silver-tellurium mineralization in the Metalliferi Mountains of western Romania. Econ Geol 95:495-16
    2. Aleksander-Kwaterczak U, Ciszewski D (2012) Groundwater hydrochemistry and soil pollution in a catchment affected by an abandoned lead–zinc mine: functioning of a diffuse pollution source. Environ Earth Sci 65:1179-189 CrossRef
    3. Azzali E (2011) Ochreous precipitates related to acid mine drainage (AMD) processes: mineralogy, chemistry, and desorption experiments. Plinius 37:147
    4. Azzali E, Carbone C, Marescotti P, Lucchetti G (2011) Relationships between soil color and mineralogical composition: application for the study of waste-rock dumps in abandoned mines. N Jb Miner Abh 188(1):75-5 CrossRef
    5. Balintoni I (1994) Structure of the Apuseni Mountains. Rom J Tect Reg Geol 75(2):9-4
    6. Baron S, T?ma? CG, Cauuet B, Munoz M (2011) Lead isotope analyses of gold–silver ores from Ro?ia Montan? (Romania): a first step of a metal provenance study of Roman mining activity in Alburnus Maior (Roman Dacia). J Archaeol Sci 38:1090-100 CrossRef
    7. Berza T, Constantinescu E, Vlad SN (1998) Upper cretaceous magmatic series and associated mineralisation in the Carpathian-Balcan orogen. Resour Geol 48:291-06 CrossRef
    8. Bird G, Brewer PA, Macklin MG, Serban M, Balteanu D, Driga B (2005) Heavy metal contamination in the Arie? river catchment, western Romania: Implications for development of the Ro?ia Montan? gold deposit. J Geochem Explor 86:26-8 CrossRef
    9. Blott SJ, Pye K (2001) GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf Proc Land 26:1237-248 CrossRef
    10. Blowes DW, Ptacek CJ, Jambor JL, Weisener CG (2003) The geochemistry of acid mine drainage. In: Lollar BS, Holland HD, Turekian KK (eds) Environmental geochemistry, Treatise on geochemistry, vol 9. Elsevier-Pergamon, Oxford, pp 149-04 CrossRef
    11. Bzdusek PA, Christensen ER, Lee CM, Pakadeesusuk U, Freedman DC (2006) PCB congeners and dechlorination in sediments of Lake Hartwell, South Carolina, determined from cores collected in 1987 and 1988. Env Sci Technol 40:109-19 CrossRef
    12. Carlon C (ed) (2007). Derivation methods of soil screening values in Europe. A review and evaluation of national procedures towards harmonization. European Commission, Joint Research Centre, Ispra, EUR 22805-EN, pp 306
    13. Cauuet B, Ancel B, Rico C, T?ma? CG (2010) Mining archeology. In: Damian P (ed) Ancient mining networks. The French archaeological missions 1999-001 Alburnus Maior I. Mega, Cluj-Napoca, pp 453-10
    14. Comero S, Servida D, De Capitani L, Gawlik BM (2012) Geochemical characterization of an abandoned mine site: a combined positive matrix factorization and GIS approach compared with principal component analysis. J Geochem Explor 118:30-7 CrossRef
    15. Costin D, Baciu C, Pop C, Varga I (2011) Field-based kinetic testing of ARD potential of the waste rock from Ro?ia montan? ore deposit (Apuseni mountains, Romania) in IMWA 2011, p 677-81
    16. Csontos L (1995) Tertiary tectonic evolution of the intra- Carpathian area: a review. Acta Vulcanologica 7(2):1-3
    17. Csontos L, Nagymarosy A, Horvath F, Kovac M (1992) Tertiary evolution of the intra-Carpathian area; a model. Tectonophysics 208:221-41 CrossRef
    18. Ekemen Keskin T, Toptas S (2012) Heavy metal pollution in the surrounding ore deposits and mining activity: a case study from Koyulhisar (Sivas-Turkey). Environ Earth Sci 67:859-66 CrossRef
    19. Fernandez RN, Schulze DG (1992) Munsell colors of soils simulated by mixtures of goethite and hematite with kaolinite. Z Pflanzenern?hr Bodenkd 155:473-78 CrossRef
    20. Florea RM, Stoica AI, Baiulescu GE, Capota P (2005) Water pollution in gold mining industry: a case study in Rosia Montana district, Romania. Environ Geol 48:1132-136 CrossRef
    21. Forray FL, Hallbauer DK (2000) A study of the pollution of the Aries River (Romania) using capillary electrophoresis as analytical technique. Environ Geol 39(12):1372-384 CrossRef
    22. Frau F, Marescotti P (2011) Mineralogical and geochemical techniques to investigate the relationships between minerals and contaminants in supergenic environments: an update review. N Jb Miner Abh 188(1):1- CrossRef
    23. Huang S, Conte MH (2009) Source/process apportionment of major and trace elements in sinking particles in the Sargasso sea. Geochim Cosmochim Acta 73:65-0 CrossRef
    24. Huang LM, Deng CB, Huang N, Huang XJ (2012) Multivariate statistical approach to identify heavy metal sources in agricultural soil around an abandoned Pb–Zn mine in Guangxi Zhuang Autonomous Region, China. Environ Earth Sci. doi:10.1007/s12665-012-1831-8
    25. Ian Wark Research Institute, Environmental Geochemistry International (2002) ARD test handbook. AMIRA P387A project: prediction and kinetic control of acid mine dranaige. Amira International, Melbourne
    26. Jambor JL, Blowes DW (1994) Short course on environmental geochemistry of sulphide-mine wastes. In: Mineralogical Association of Canada (ed) Short Course Handbook, vol 22, p 438
    27. Korte F, Spiteller M, Coulston F (2000) The cyanide leaching gold recovery process is a nonsustainable technology with unacceptable impacts on ecosystems and humans: the disaster in Romania. Ecotox Environ Safe 46:241-45 CrossRef
    28. Kouzmanov K, von Quadt A, Peytcheva I, Harris C, Heinrich CA, Ro?u E, O’Connor G (2005) Rosia Poieni porphyry Cu-Au and Ro?ia Montana epithermal Au-Ag deposits, Apuseni Mts, Romania: timing of magmatism and related mineralisation. In: Cook NJ, Bonev IK (eds) Au-Ag-Te-Se deposits, IGCP Project 486 - Proceedings of the 2005 Field Workshop. Kiten, Bulgaria, pp 113-17
    29. Krige DG (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J Chem Metallurgical Min Soc S Afr 52:119-39
    30. Lee E, Chan CK, Paatero P (1999) Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmos Environ 33:3201-212 CrossRef
    31. Lu J, Jiang P, Wu L, Chang AC (2008) Assessing soil quality data by positive matrix factorization. Geoderma 145:259-66 CrossRef
    32. Manske S, Ullrich T, Reynolds J, O’Connor GV (2004) Vein sets and hydrothermal alteration in the Cetate-Carnic Area, Ro?ia Montan? District, Romania. Romanian J Miner Deposits 81:122-25
    33. Manske SL, Hedenquist JW, O’Connor G, Tamas C, Cauuet B, Leary S, Minut A (2006) Ro?ia Montan?, Romania: Europe’s largest gold deposit. Soc Eco Geo Newsletter 64(1):9-5
    34. Marescotti P, Carbone C, De Capitani L, Grieco G, Lucchetti G, Servida D (2008) Mineralogical and geochemical characterisation of open pit tailing and waste rock dumps from the Libiola Fe-Cu sulfide mine (Eastern Liguria, Italy). Environ Geol 53:1613-626 CrossRef
    35. Marescotti P, Azzali E, Servida D, Carbone C, Grieco G, De Capitani L, Lucchetti G (2010) Mineralogical and geochemical spatial analyses of a waste-rock dump at the Libiola Fe-Cu sulfide mine (Eastern Liguria, Italy). Environ Earth Sci 61(1):187-99 CrossRef
    36. Marza I, Tamas CG, Ghergari L (1997) Low sulfidation epithermal ore deposits from Ro?ia Montan?, Metalliferi Mountains, Romania. Studi si Cercetari Geologice 42:3-2
    37. Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246-266 CrossRef
    38. Morin KA, Hutt NM (2001) Environmental geochemistry of minesite drainage: practical theory and case studies. MDGA Publishing, Vancouver, B.C., Canada 333 pp
    39. Nicolae I (1995) Tectonic setting of the ophiolites from the South Apuseni Mountains: Magmatic Arc and Marginal Basin. Rom J Tect Reg Geol 76:27-9
    40. Nordstrom DK, Alpers CN (1999) Geochemistry of acid mine waters. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits. Rev Econ Geol, vol 6a, p 133-60
    41. Nordstrom DK, Alpers CN, Ptacek CJ, Blowes DW (2000) Negative pH and Extremely Acidic Mine Waters from Iron Mountain. California Environ Sci Technol 34:254-58 CrossRef
    42. Paatero P (1997) Least square formulation of robust non-negative factor analysis. Chemometr Intell Lab 37:23-5 CrossRef
    43. Paatero P (2007a) User’s guide for Positive Matrix Factorization programs PMF2 and PMF3, Part1: tutorial. University of Helsinki, Helsinki, Finland
    44. Paatero P (2007b) User’s guide for positive matrix factorization programs PMF2 and PMF3, Part2: references. University of Helsinki, Helsinki, Finland
    45. Paatero P, Hopke PK, Song XH, Ramadan Z (2002) Understanding and controlling rotations in factor analytic models. Chemometr Intell Lab 60:253-64 CrossRef
    46. Pécskay Z, Lexa J, Szakács A, Balogh K, Seghedi I, Kone?ny V, Kovacs M, Márton E, Kaliciak M, Széky-Fux V, Póka T, Gyarmati P, Edelstein O, Ro?u E, Ze? B (1995) Space and time distribution of neogene–quaternary volcanism in the carpatho - pannonian region. Acta Vulcanologica 7:15-8
    47. Pécskay Z, Seghedi I, Downes H, Prychodko M, Mackiv B (2000) Geochronological and volcanological study of calc-alkaline volcanic rocks from Transcarpathia. SW Ukraine Geol Carpath 51(2):83-9
    48. Qin Y, Kim E, Hopke PK (2006) The concentration and sources of PM2.5 in metropolitan New York City. Atmos Environ 40:312-32 CrossRef
    49. Ro?ia Montan? Gold Corporation (2006) Report on Environmetal Impact Assessment study
    50. Ro?u E, Pécskay Z, Stefan A, Popescu G, Panaiotu C, Panaiotu CE (1997) The evolution of the Neogene volcanism in the Apuseni Mountains (Rumania): constraints from new K-Ar data. Geol Carpath 48:353-59
    51. Ro?u E, Seghedi I, Downes H, Alderton D, Szakács A, Pécskay Z, Panaiotu C, Nedelcu L (2004) Extension-related Miocene calc-alkaline magmatism in the Apuseni Mountains, Romania: Origin of magmas. Schweiz Miner Petrog 84:153-72
    52. Royden LH, Burchfiel BC (1989) Are systematic variations in thrust belt style related to boundary processes? (The Western Alps versus the Carpathians). Tectonics 8:51-1 CrossRef
    53. Sahy D, Schutte P (2006) Ro?ia Montan? -Europe’s largest ephitermal breccia-hosted Au-Ag deposit. Romania Field Trip SEG Students, Romania
    54. S?ndulescu M (1984) Geotectonica Romaniei (in Romanian). Editura Tehnic?, Bucure?ti
    55. S?ndulescu M (1988) Cenozoic tectonic history of the Carpathians. In: Royden L, Horváth F (eds) The Pannonian Basin: a study in Basin evolution. AAPG Memoir, vol 45, p 17-5
    56. Savu H (1996) A comparative study of the ophiolites obducted from two different segments of the Mure? ocean “Normal-median ridge (Romania). Rom J Petrol 77:46-0
    57. Scheinost AC, Schwertmann U (1999) Color Identification of Iron Oxides and Hydroxysulfates: use and limitations. Soil Sci Soc Am J 63:1463-471
    58. Sillitoe RH, Hedenquist JW (2003) Linkages between tectonic settings, ore fluid composition, and epithermal precious metal deposits. Soc Eco Geo Spc Pub 10:315-43
    59. Smith KS, Huyck HLO (1999) An overview of the abundance, relative mobility, bioavailability and human toxicity of metals. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits. Rev Econ Geol. vol 6A, p 29-0
    60. Sobek AA, Schuller WA, Freeman JR, Smith RM (1978). Field and Laboratory Methods Applicable to Overburdens and Minesoils. 47-0. U.S. Environmental Protection Agency, Cincinnati, Ohio, 45268. EPA-600/2-78-054
    61. Soldan P, Pavonic M, Boucek J, Kokes J (2001) Baia Mare accident-brief ecotoxicological report of Czech experts. Ecotox Environ Safe 49:255-61 CrossRef
    62. Song XH, Polissar AV, Hopke PK (2001) Sources of fine particle composition in the northeastern US. Atmos Environ 35:5277-286 CrossRef
    63. Soregaroli BA, Lawrence RW (1977) Waste rock characterization at Dublin Gulch: a case study. Proceedings of the 4 th international conference on acid rock drainage, Vancouver, pp 631-45
    64. Stefan A (1986) Eocretaceous granitoids from the South Apuseni. D.S. Inst. Geol Geofiz 70-1(1):229-41
    65. Tamas CG, Bailly L (1999). Ro?ia Montan? low sulfidation ore deposit-evidence from fluid inclusion study. Studia Universitatis Babes-Bolyai, Geologia, vol. XLIV/1, pp 49-6
    66. Vaccaro S, Sobiecka E, Contini S, Locoro G, Free F, Gawlik BM (2007) The application of positive matrix factorization in the analysis, characterization and detection of contaminated soils. Chemosphere 69:1055-063 CrossRef
    67. Wallier S, Ray R, Kouzmanov K, Pettke T, Heinrich CA, Leary S, O’Connor G, Calin GT, Vennemann T, Ullrich T (2006) Magmatic fluids in the breccia-hosted epithermal Au-Ag deposit of Ro?ia Montan?. Romania Econ Geol 101(5):923-54 CrossRef
    68. Webster R, Oliver MA (2001) Geostatistics for environmental scientists. Wiley, Chichester
    69. Weiner BB (2011) What is a continuous particle size distribution? Brookhaven Instruments Corporation White Paper, Holtsville
    70. Zhang Y, Sheesley RJ, Schauer JJ, Lewandowski M, Jaoui M, Offenberg JH, Kleindienst TE, Edney EO (2009) Source apportionment of primary and secondary organic aerosol using positive matrix factorization (PMF) of molecular markers. Atmos Environ 43:5567-570 CrossRef
  • 作者单位:Diego Servida (1)
    Sara Comero (1) (2)
    Mara Dal Santo (1) (3)
    Luisa de Capitani (1)
    Giovanni Grieco (1)
    Pietro Marescotti (4)
    Silvia Porro (1)
    Ferenc Lázár Forray (5)
    ágnes Gál (5)
    Alexandru Szakács (6)

    1. Dipartimento di Scienze della Terra “Ardito Desio- Università di Milano, Via Botticelli 23, 20133, Milan, Italy
    2. Institute for Environment and Sustainability, European Commission’s Joint Research Centre, Via Enrico Fermi, 21020, Ispra, Italy
    3. MWH S.p.A, Centro Direzionale Milano 2, Palazzo Canova, Segrate, 20090, Milan, Italy
    4. DISTAV-Dipartimento di Scienze della Terra, dell’Ambiente e della Vita, Università di Genova, Corso Europa 26, 16132, Genoa, Italy
    5. Department of Geology, Babe?-Bolyai University, M. Kog?lniceanu 1, Cluj-Napoca, Romania
    6. Department of Environmental Sciences, Sapientia University, Str. Matei Corvin 4, 400112, Cluj-Napoca, Romania
文摘
Ro?ia Montan?, the largest European gold mine, could be re-opened. Environmental problems led to severe pollution of the Ro?ia and Abrud Rivers. The two main potentially toxic element (PTE) sources in mine sites are, in general, the abandoned underground workings and the piles of waste rock. Since the composition of waste rocks is often heterogeneous, this study faces the problem of estimating their mineralogical and chemical features starting from a set of sampling point. Twenty-five samples were collected on the main waste dump of the Ro?ia Montan? mine following a virtual squared grid (knots distance about 25?m). Grain size, color, bulk chemistry, mineralogy, acid mine drainage potential and a set of selected PTE (Ag, As, Cu, Ni, Pb and Zn) concentrations were determined on each sample. In a first approximation two main waste rock groups were identified: WR1 bulk composition is dacite-dominated, while WR2 is andesite-dominated. In both of them the concentrations of PTEs are below the regulatory limits for soils, with the exception of As. In terms of acid mine drainage, WR1 has a net acid-producing potential, while WR2 has a net neutralizing potential. The anisotropy of WR properties were analysed by means of semi-variograms and displayed with contour maps. Application of positive matrix factorization for the analysis of all the data relative to waste rocks allowed defining, in a semi-quantitative way, the factors controlling pollution and their spatial distribution. The processing of score matrix G factor associated with the geostatistical elaboration promises to be a powerful tool to discern the composition of mine dumps and support the exploitation and remediation phases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700