Ethyl acetate extract of Wedelia chinensis inhibits tert-butyl hydroperoxide-induced damage in PC12 cells and D-galactose-induced neuronal cell loss in mice
详细信息    查看全文
  • 作者:Wea-Lung Lin (25) (26)
    Shao-Ming Wang (27)
    Ying-Jui Ho (28)
    Hsing-Chun Kuo (29)
    Yean-Jang Lee (30)
    Tsui-Hwa Tseng (27) (31)

    25. Department of Pathology
    ; Chung Shan Medical University Hospital ; No. 110 ; Section 1 ; Chien-Kuo N. Road ; Taichung ; 402 ; Taiwan
    26. School of Medicine
    ; Chung Shan Medical University ; No. 110 ; Section 1 ; Chien-Kuo N. Road ; Taichung ; Taiwan
    27. School of Medical Applied Chemistry
    ; Chung Shan Medical University ; No. 110 ; Section 1 ; Chien-Kuo N. Road ; Taichung ; 402 ; Taiwan
    28. School of Psychology
    ; Chung Shan Medical University ; No. 110 ; Section 1 ; Chien-Kuo N. Road ; Taichung ; 402 ; Taiwan
    29. Department of Nursing
    ; Chang Gung University of Science and Technology ; Chia-Yi Campus No. 2 ; Chia-Pu Rd. West Sec. Putz ; Chia-Yi ; 613 ; Taiwan
    30. Department of Chemistry
    ; National Changhua University of Education ; No. 1 ; Jin-De Road ; Changhua ; 500 ; Taiwan
    31. Department of Medical Education
    ; Chung Shan Medical University Hospital ; No. 110 ; Section 1 ; Chien-Kuo N. Road ; Taichung ; 402 ; Taiwan
  • 关键词:Apoptosis ; t ; butylhydroperoxide ; D ; galactose ; Luteolin ; Wedelia chinensis ; Wedelolactone
  • 刊名:BMC Complementary and Alternative Medicine
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:1,933 KB
  • 参考文献:1. Quintanilla, RA, Orellana, JA, von Bernhardi, R (2012) Understanding risk factors for Alzheimer鈥檚 disease: interplay of neuroinflammation, connexin-based communication and oxidative stress. Arch Med Res 43: pp. 632-644 CrossRef
    2. Adams, JD, Klaidman, LK, Huang, YM, Cheng, JJ, Wang, ZJ, Nguyen, M, Knusel, B, Kuda, A (1994) The neuropathology of intracerebroventricular t-butylhydroperoxide. Mol Chem Neuropathol 22: pp. 123-142 CrossRef
    3. Plas, EK, Aw, TY (2002) Early redox imbalance mediates hydroperoxide-induced apoptosis in mitotic competent undifferentiated PC-12 cells. Cell Death Differ 9: pp. 1007-1016 CrossRef
    4. Iannone, A, Bini, A, Jin, YG, Vannini, V, Tomasi, A (1993) tert-Butylhydroperoxide bioactivation to methyl radical in rat liver mitochondria and submitochondrial particles. Free Radic Res Commun 19: pp. S141-S147 CrossRef
    5. Guidarelli, A, Clementi, E, Sciorati, C, Cattabeni, F, Cantoni, O (1997) Calcium-dependent mitochondrial formation of species mediating DNA single strand breakage in U937 cells exposed to sublethal concentrations of tert-butylhydroperoxide. J Pharmacol Exp Ther 283: pp. 66-74
    6. Hsia, CH, Wang, CH, Kuo, YW, HO, YJ, Chen, HL (2012) Fructo-oligosaccharide systemically diminished D-galactose-induced oxidative molecule damage in BALB/cJ mice. Br J Nutr 107: pp. 1787-1792 CrossRef
    7. Zhong, SZ, Ge, QH, Qu, R, Li, Q, Ma, SP (2009) Paeonol attenuates neurotoxicity and ameliorates cognitive impairment induced by D-galactose in ICR mice. J Neurol Sci 277: pp. 58-64 CrossRef
    8. Lin, SC, Lin, CC, Lin, YH, Shyuu, SJ (1994) Hepatoprotective effects of Taiwan folk medicine: Wedelia chinensis on three hepatotoxin-induced hepatotoxicity. Am J Chin Med 22: pp. 155-168 CrossRef
    9. Manjamalai, A, Sardar-Sathyajith-Singh, R, Guruvayoorappan, C, Berlin-Grace, VM (2010) Analysis of phytochemical constituents and anti-microbial activity of some medicinal plants in Tamilnadu, India. Global J Biotech Biochem 5: pp. 120-128
    10. Haldar, PK, Bhattacharya, S, Dewanjee, S, Mazumder, UK (2011) Chemopreventive efficacy of Wedelia calendulaceae against 20-methylcholanthrene- induced carcinogenesis in mice. Environ Toxicol Phar 31: pp. 10-17 CrossRef
    11. Prakash, T, Rao, NR, Viswanatha Swamy, AH (2008) Neuropharmacological studies on Wedelia calendulacea Less stem extract. Phytomedicine 15: pp. 959-970 CrossRef
    12. Lin, FM, Chen, LR, Lin, EH, Ke, FC, Chen, HY, Tsai, MJ, Hsiao, PW (2007) Compounds from Wedelia chinensis synergistically suppress androgen activity and growth in prostate cancer cells. Carcinogenesis 28: pp. 2521-2529 CrossRef
    13. Seelinger, G, Merfort, I, Schempp, CM (2008) Anti-oxidant, anti-inflammatroy and anti-allergic activities of luteolin. Planta Med 74: pp. 1667-1677 CrossRef
    14. Lin, CW, Wu, MJ, Liu, IYC, Su, JD, Yen, JH (2010) Neurotrophic and cytoprotective action of luteolin in PC12 cells through ERK-dependent induction of Nrf2-driven HO-1 expression. J Agric Food Chem 58: pp. 4477-4486 CrossRef
    15. Lin, Y, Shi, R, Wang, X, Shen, HM (2008) Luteolin a flavonoid with potentials for cancer prevention and therapy. Curr Cancer Drug Targets 8: pp. 634-646 CrossRef
    16. Kobori, M, Yang, Z, Gong, D, Heissmeyer, V, Zhu, H, Jung, YK, Gakidis, MA, Rao, A, Sekine, T, Ikegami, F, Yuan, C, Yuan, J (2004) Wedelolactone suppresses LPS-induced caspase-11 expression by directly inhibiting the IKK complex. Cell Death Differ 11: pp. 123-130 CrossRef
    17. P么莽as, ES, Lopes, DV, da Silva, AJ, Pimenta, PH, Leit茫o, FB, Netto, CD, Buarque, CD, Brito, FV, Costa, PR, No毛l, F (2006) Structure鈥揳ctivity relationship of wedelolactone analogues: structural requirements for inhibition of Na+, K+-ATPase and binding to the central benzodiazepine receptor. Bioorg Med Chem 14: pp. 7962-7966 CrossRef
    18. Kaushik-Basu, N, Bopda-Waffo, A, Talele, TT, Basu, A, Costa, PR, da Silva, AJ, Sarafianos, SG, Noel, F (2008) Identification and characterization of coumestans as novel HCV NS5B polymerase inhibitors. Nucleic Acids Res 36: pp. 1482-1496 CrossRef
    19. Benes, P, Knopfova, L, Trcka, F, Nemajerova, A, Pinheiro, D, Soucek, K, Fojta, M, Smarda, J (2011) Inhibition of topoisomerase II伪: Novel function of wedelolactone. Cancer Lett 303: pp. 29-38 CrossRef
    20. Lee, YJ, Lin, WL, Chen, NF, Chuang, SK, Tseng, TH (2012) Demethylwedelolactone derivatives inhibit invasive growth in vitro and lung metastasis of MDA-MB-231 breast cancer cells in nude mice. Eur J Med Chem 56: pp. 361-367 CrossRef
    21. Chang, CF, Yang, LY, Chang, SW, Fang, YT, Lee, YJ (2008) Total synthesis of demethylwedelolactone and wedelolactone by Cu-mediated/Pd(0)-catalysis and oxidative-cyclization. Tetrahedron 64: pp. 3661-3666 CrossRef
    22. Yang, J, Liu, X, Bhalla, K, Kim, CN, Ibrado, AM, Cai, J, Peng, TI, Jones, DP, Wang, X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome C from mitochondria blocked. Science 75: pp. 1139-1142
    23. Sinha, K, Das, J, Pal, PB, Sil, PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87: pp. 1157-1180 CrossRef
    24. Dewson, G, Kluck, RM (2010) Bcl-2 family-regulated apoptosis in health and disease. Cell Health and Cytoskeleton 2: pp. 9-22
    25. Perier, C, Bove, J, Wu, DC, Dehay, B, Choi, DK, Jackson-Lewis, V, Rathke-Hartlieb, S, Bouillet, P, Strasser, A, Schulz, JB, Przedborski, S, Vila, M (2007) Two molecular pathways initiated mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson鈥檚 disease. Proc Natl Acad Sci U S A 104: pp. 8161-8166 CrossRef
    26. Scapagnini, G, Sonya, V, Nader, AG, Calogero, C, Zella, D, Fabio, G (2011) Modulation of Nrf2/ARE pathway by food polyphenols: a nutritional neuroprotective strategy for cognitive and neurodegerative disorders. Mol Neurobiol 44: pp. 192-201 CrossRef
    27. Majewska, M, Skrzycki, M, Podsiad, M, Czeczot, H (2011) Evaluation of antioxidant potential of flavonoids: an in vitro study. Acta Pol Pharm 68: pp. 611-615
    28. Unnikrishnan, KP, Fathima, A, Hashim, KM, Balachandran, I (2007) Antioxidant Studies and Determination of Wedelolactone in Eclipta alba. J Plant Sci 2: pp. 459-464 CrossRef
    29. Jellinger, KA (2010) Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med 14: pp. 457-487 CrossRef
    30. Uttara, B, Singh, AV, Zamboni, P, Mahajan, RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and down stream antioxidant therapeutic options. Curr Neuropharmacol 7: pp. 65-74 CrossRef
    31. Federico, A, Cardaioli, E, Da Pozzo, P, Formichi, P, Gallus, GN, Radi, E (2012) Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci 322: pp. 254-262 CrossRef
    32. Reagan-Shaw, S, Nihal, M, Ahmad, N (2007) Dose translation from animal to human studies revisited. FASEB J 22: pp. 659-661 CrossRef
    33. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1472-6882/14/491/prepub
  • 刊物主题:Complementary & Alternative Medicine; Internal Medicine; Chiropractic Medicine;
  • 出版者:BioMed Central
  • ISSN:1472-6882
文摘
Background Wedelia chinensis is traditionally used as a hepatoprotective herb in Taiwan. The aim of this study was to evaluate the neuroprotective potential of W. chinensis. Methods An ethyl acetate extract of W. chinensis (EAW) was prepared and analyzed by HPLC. The neuroprotective potential of EAW was assessed by tert-butylhydroperoxide (t-BHP)-induced damage in PC12 cells and D-galactose-induced damage in mouse cortex. Results EAW exhibited potent radical scavenging property and highly contained luteolin and wedelolactone. EAW decreased t-BHP-induced reactive oxygen species (ROS) accumulation, cytotoxicity and apoptosis in PC12 cells. EAW and its major constituents blocked t-BHP-induced cytochrome C release and Bcl-2 family protein ratio change. EAW and its major constituents increased the endogenous antioxidant capacity evaluated by the binding activity assay of nuclear factor E2-related factor 2 (Nrf2) to antioxidant response element (ARE) and nuclear translocation of Nrf2 respectively in PC12 cells. Finally, EAW inhibited D-galactose-induced lipid peroxidation, apoptosis and neuron loss in the cerebral cortex of mice. Conclusion These results demonstrate that W. chinensis has neuroprotective potential through blocking oxidative stress-induced damage and that luteolin and wedelolactone contribute to the protective action.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700