Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds
详细信息    查看全文
  • 作者:Cho-Pei Jiang (1)
    Yo-Yu Chen (2)
    Ming-Fa Hsieh (3)
    Hung-Maan Lee (4)
  • 关键词:Poly(ethylene glycol) ; Poly(ε ; caprolactone) ; Scaffold ; Osteoblast ; Solid freeform fabrication
  • 刊名:Biomedical Microdevices
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:15
  • 期:2
  • 页码:369-379
  • 全文大小:731KB
  • 参考文献:1. C.D. Chin, K. Khanna, S.K. Sia, Biomed. Microdevices 10, 459 (2008) CrossRef
    2. K.B. Chirag, R.P. Shelly, J.P. Andrew, Am. J. Physiol. Cell Physiol. 290, C1640–C1650 (2006) CrossRef
    3. C. Choi, S.Y. Chae, T.H. Kim, M.K. Jang, C.S. Cho, J.W. Nah, Bull. Korean Chem. Soc. 26, 4 (2005)
    4. N.-V. Cuong, M.-F. Hsieh, Y.-T. Chen, L. Ian, J. Biomater. Sci. Polym. Ed. 22, 1409 (2011) CrossRef
    5. N.-V. Cuong, Y.-L. Li, M.-F. Hsieh, J. Mater. Chem. 22, 1006 (2012) CrossRef
    6. C.P. Foley, N. Nishimura, K.B. Neeves, C.B. Schaffer, W.L. Olbricht, Biomed. Microdevices 11, 915 (2009) CrossRef
    7. C.Y. Gong, P.W. Dong, S. Shi, S.Z. Fu, J.L. Yang, G. Guo, X. Zhao, Y.Q. Wei, Z.Y. Qian, J. Pharm. Sci. 98, 3707 (2009) CrossRef
    8. Y. Hu, D.W. Grainger, S.R. Winn, J.O. Hollinger, J. Biomed. Mater. Res. 59, 563 (2002) CrossRef
    9. M.J. Hwang, M.K. Joo, B.G. Choi, M.H. Park, I.W. Hamley, B. Jeong, Macromol. Rapid Commun. 31, 2064 (2010) CrossRef
    10. V. Karageorgiou, D. Kaplan, Biomaterials 26, 5474 (2005) CrossRef
    11. H.W. Kim, J.C. Knowles, H.E. Kim, Biomaterials 25, 1279 (2004) CrossRef
    12. J.J. Lee, S.G. Lee, J.C. Park, Y.I. Yang, J.K. Kim, Curr. Appl. Phys. 7, 37 (2007) CrossRef
    13. S.J. Lee, H.W. Kang, J.K. Park, J.W. Rhie, S.K. Hahn, D.W. Cho, Biomed. Microdevices 10, 233 (2008) CrossRef
    14. C. Lu, S.R. Guo, Y. Zhang, Z. Li, J. Gu, Eur. Polym. J. 43, 1857 (2007) CrossRef
    15. A.K. Michael, Biomaterials 25, 1697 (2004) CrossRef
    16. A. Nakahira, T. Murakami, T. Onoki, T. Hashida, J. Am. Ceram. Soc. 88, 1334 (2005) CrossRef
    17. S.H. Oh, I.K. Park, J.M. Kim, J.H. Lee, Biomaterials 28, 1664 (2007) CrossRef
    18. S.J. Park, Y.J. Yang, H.B. Lee, Colloids Surf. B 38, 35 (2004) CrossRef
    19. S.R. Peyton, C.M. Ghajar, C.B. Khatiwala, A.J. Putnam, Cell Biochem. Biophys. 47, 300-20 (2007) CrossRef
    20. C.A. Reinhart-King, M. Dembo, D.A. Hammer, Biophys. J. 95, 6044-051 (2008) CrossRef
    21. M. Schieker, H. Seitz, I. Drosse, S. Seitz, W. Mutschler, European Journal of Trauma, 114 (2006)
    22. L. Shor, E.D. Yildirim, S. Gü?eri, W. Sun, Precision Extruding Deposition for Freeform Fabrication of PCL and PCL-HA Tissue Scaffolds, Printed Biomaterials, 91-10 (2010)
    23. N. Specchia, A. Pagnotta, M. Cappella, A. Tampieri, F. Greco, J. Mater. Sci. 37, 577 (2002) CrossRef
    24. G.J. Wang, Y.C. Lin, S.H. Hsu, Biomed. Microdevices 12, 841 (2010) CrossRef
    25. H.J. Yen, C.S. Tseng, S.H. Hsu, C.L. Tsai, Biomed. Microdevices 11, 615 (2009) CrossRef
    26. Y. Zhu, C. Gao, J. Shen, Biomaterials 23, 4889 (2002) CrossRef
  • 作者单位:Cho-Pei Jiang (1)
    Yo-Yu Chen (2)
    Ming-Fa Hsieh (3)
    Hung-Maan Lee (4)

    1. Department of Power Mechanical Engineering, National Formosa University, Yunlin County, Taiwan
    2. Institute of Mechanical and Electro-Mechanical Engineering, National Formosa University, Yunlin County, Taiwan
    3. Department of Biomedical Engineering, Chung Yuan Christian University, Chung Li, Taiwan
    4. Hualien Armed Forces General Hospital, Hualien, Taiwan
  • ISSN:1572-8781
文摘
Bone tissue engineering is an emerging approach to provide viable substitutes for bone regeneration. Poly(ethylene glycol) (PEG) is a good candidate of bone scaffold because of several advantages such as hydrophilicity, biocompatibility, and intrinsic resistance to protein adsorption and cell adhesion. However, its low compressive strength limits application for bone regeneration. Poly(ε-caprolactone) (PCL), a hydrophobic nonionic polymer, is adopted to enhance the compressive strength of PEG alone.We aimed to investigate the in-vitro response of osteoblast-like cells cultured with porous scaffolds of triblock PEG-PCL-PEG copolymer fabricated by an air pressure-aided deposition system. A desktop air pressure-aided deposition system that involves melting and plotting PEG-PCL-PEG was used to fabricate three-dimensional scaffolds having rectangular pores. The experimental results showed that PEG-PCL-PEG with a molecular weight of 25,000 can be melted and stably deposited through a heating nozzle at an air pressure of 0.3?MPa and no crack occurs after it solidifies. The scaffolds with pre-determined pore size of 400× 420?μm and a porosity of 79?% were fabricated, and their average compressive strength was found to be 18.2?MPa. Osteoblast-like cells, MC3T3-E1, were seeded on fabricated scaffolds to investigate the in-vitro response of cells including toxicity and cellular locomotion. In a culture period of 28?days, the neutral-red stained osteoblasts were found to well distributed in the interior of the scaffold. Furthermore, the cellular attachment and movement in the first 10?h of cell culture were observed with time-lapse microscopy indicating that the porous PEG-PCL-PEG scaffolds fabricated by air pressure-aided deposition system is non-toxicity for osteoblast-like cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700