Anion recognition by azophenol thiourea-based chromogenic sensors: a combined DFT and molecular dynamics investigation
详细信息    查看全文
  • 作者:Ming Wah Wong (1)
    Huifang Xie (1)
    Soo Tin Kwa (1)
  • 关键词:Anion receptor ; Molecular recognition ; Chromogenic sensor ; DFT ; Molecular dynamics
  • 刊名:Journal of Molecular Modeling
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:19
  • 期:1
  • 页码:205-213
  • 全文大小:608KB
  • 参考文献:1. Sessler JL, Gale PA, Cho WS (2006) Anion receptor chemistry. Royal Society of Chemistry, Cambridge
    2. Gunnlaugsson T, Glynn M, Tocci GM, Kruger PE, Pfeffer FM (2006) Coord Chem Rev 250:3094-117 CrossRef
    3. Gale PA, Quesada R (2006) Coord Chem Rev 250:3219-244 CrossRef
    4. Wong MW, Ghosh T, Maiya BG (2004) J Phys Chem A 108:11249-1259 CrossRef
    5. Lee SJ, Jung JH, Seo J, Yoon I, Park KM, Lindoy LF, Lee SS (2006) Org Lett 8:1641-643 CrossRef
    6. Singh NJ, Jun EJ, Chellappan K, Thangadurai D, Chandran RP, Hwang IC, Yoon J, Kim KS (2007) Org Lett 9:485-88 CrossRef
    7. Lu QS, Dong L, Zhang J, Li J, Jiang L, Huang Y, Qin S, Hu CW, Yu XQ (2009) Org Lett 11:669-72 CrossRef
    8. Li AF, Wang JH, Wang F, Jiang YB (2010) Chem Soc Rev 39:3729-745 CrossRef
    9. Kato R, Nishizawa S, Hayashita T, Teramae N (2001) Tetrahedron Lett 42:5053-056 CrossRef
    10. Lee DH, Lee KH, Hong JI (2001) Org Lett 3:5- CrossRef
    11. Lee DH, Lee HY, Lee KH, Hong JI (2001) Chem Commun 1188-189
    12. Lee DH, Im JH, Son SU, Chung YK, Hong JI (2003) J Am Chem Soc 125:7752-753 CrossRef
    13. Chen YJ, Chung WS (2009) Eur J Org Chem 4770-776
    14. Ruangpornvisuti VJ (2004) Mol Struct Theochem 686:47-5 CrossRef
    15. Mondal CK, Lee JY (2006) J Theor Comput Chem 5:857-69 CrossRef
    16. Jose DA, Singh A, Das A, Ganguly B (2007) Tetrahedron Lett 48:3695-698 CrossRef
    17. Rakrai W, Morakot N, Keawwangchai S, Kaewtong C, Wanno B, Ruangpornvisuti V (2011) Struct Chem 22:839-47 CrossRef
    18. Xie H, Wong MW (2012) Aust J Chem 65:303-13 CrossRef
    19. Becke DA (1993) J Chem Phys 98:5648-652 CrossRef
    20. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785-89 CrossRef
    21. Wong MW (1996) Chem Phys Lett 256:391-99 CrossRef
    22. Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327-35 CrossRef
    23. Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210-221
    24. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899-26 CrossRef
    25. Messerschmidt M, Wagner A, Wong MW, Luger P (2002) J Am Chem Soc 124:732-33 CrossRef
    26. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251-260 CrossRef
    27. Cheeseman JR, Trucks GW, Keith T, Frisch MJ (1996) J Phys Chem 104:5497-509 CrossRef
    28. Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256:454-64 CrossRef
    29. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439-449 CrossRef
    30. Jacquemin D, Adamo C (2012) Int J Quantum Chem 112:2135-141 CrossRef
    31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. Gaussian Inc., Wallingford
    32. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9. University of California, San Francisco
    33. Pearlman DA, Case DA, Caldwell JW, Ross WR, Cheatham TE III, DeBolt S, Ferguson D, Seibel G, Kollman PA (1995) Comp Phys Commun 91:1-1 CrossRef
    34. Cieplak P, Caldwell JW, Kollman PA (2001) J Comput Chem 22:1048-057 CrossRef
    35. Wavefunction Inc. (2010) SPARTAN 10. Wavefunction Inc., Irvine
    36. Bondi A (1964) J Phys Chem 68:441 CrossRef
    37. Desiraju GR (1991) Acc Chem Res 24:290-96 CrossRef
    38. Ran J, Wong MW (2009) Aust J Chem 62:1062-067 CrossRef
    39. Wenthold PG, Squires RR (1985) J Phys Chem 99:2002-005 CrossRef
    40. Wiskur SL, Ait-Haddou H, Lavigne JJ, Anslyn EV (2001) Acc Chem Res 34:963-72 CrossRef
    41. B?es ES, Andrade JA, Stassen H, Goncalves PFB (2007) Chem Phys Lett 436:362-67 CrossRef
    42. Marques MAL, Ullrich CA, Nogueira F, Rubio A, Burke K, Gross EKU (eds) (2006) Time-dependent density functional theory. Springer, Berlin
    43. Dreuw A, Weisman J, Head-Gordon M (2003) J Chem Phys 119:2943-946 CrossRef
  • 作者单位:Ming Wah Wong (1)
    Huifang Xie (1)
    Soo Tin Kwa (1)

    1. Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
  • ISSN:0948-5023
文摘
The relative binding affinities of several anions towards 2-nitroazophenol thiourea-based receptors were studied using density functional theory (DFT) in the gas phase and in chloroform solvent via PCM calculations. Both receptors have five distinctive NH and OH hydrogen donor atoms. All receptor–anion complexes are characterized by five intermolecular hydrogen bonds. The binding free energies are strongly influenced by a dielectric medium, and the solvation effect alters the trend of anion binding to the receptor. The calculated order of anion binding affinity for the receptor in chloroform, H2PO 4 ?/sup> > AcO?/sup> > F?/sup> > Cl?/sup> > HSO 4 ?/sup> > NO 3 ?/sup> , is in excellent accord with experimental findings. The overall order of binding affinity is attributed to the basicity of the anion, the effect of solvation, and the number of proton acceptors available. Calculations of the NMR and UV-vis spectra strongly support the experimental characterization of the receptor–anion complexes. Explicit solvent molecular dynamics simulations of selected receptor–anion complexes were also carried out. Analysis of the structural descriptors revealed that the anions were strongly bound within the binding pocket via hydrogen-bonding interactions to the five receptor protons throughout the simulation. Figure Chromogenic anion sensing of azophenol thiourea-based receptor.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700